Chemical kinetics is the science of modeling the steps involved in a chemical reaction at the molecular level. This investigation is concerned with the chemical reactions that occur during combustion. There is ample room for improvement in most presently accepted chemical kinetic models and many reactions are still not modeled. The key to creating and improving chemical kinetic models of combustion reactions is gathering sufficient experimental data and solidifying the foundations upon which more complicated models may be built. / The experimental apparatus that is used to gather data in this study is a stagnation flame burner. Particle image velocimetry, a laser-based flow visualization technique, is used to measure velocity in both the axial and radial directions. The results are analyzed first to confirm the validity of the one-dimensional, axisymmetric model commonly used to describe impinging-jet flow. Experimental results are found to have good agreement with theoretical approximations and numerical models. Tests are then conducted to reproduce previously published data for methane-air flames at lean, stoichiometric and rich conditions in order to prove the reliability of the experimental apparatus. There is agreement between published data and the new experimental results. / Experiments with oxygen enrichment are then conducted at equivalence ratios not normally within the flammability limits of methane-air mixtures, from the very lean, phi = 0.55, to the very rich, phi = 1.45. Results show marked disagreement between model and experiment at equivalence ratios far from stoichiometric. These experimental data will allow the chemical kinetic model for premixed methane combustion to be improved -- by correcting divergence in the model at very lean and very rich conditions, the model should be improved appreciably over the narrower range of equivalence ratios typically seen in methane-air combustion. / La cinétique chimique est la science de la modélisation des étapes d'une réaction chimique au niveau moléculaire. Ce mémoire s'interesse aux réactions chimique qui se produisent durant la combustion. Les modèles cinétique présentement acceptés sont en besoin d'amélioration et d'autres enplus, il existe plusieurs réactions qui n'ont aucun modèle. Pour mieux développer les modèles et pour en créer des nouveaux, il fault rassembler assez de données expérimentales pour produire une base solide sur laquelle des modèles de plus en plus compliqués peuvent etre construits. / Pour générer des données, cette étude utilise un appareil expérimental avec une géométrie de point d'arrêt, dans laquelle une flamme aplatie peut exister. Les vitesses dans la direction axiale et radiale sont mesurées par la vélocimétire image-particule, une technique à base de laser. Les résultats sont d'abord analisés pour vérifier que le modèle unidimensionnel est valide. Une bonne concordance est observée entre la théorie et les résultats et entre les modèles numériques et les résultats. Subséquemment, des expériences sont effectuées pour reproduire des données déjà publiées pour le méthane et l'air aux rapports d'équivalence oxydants, stoechiométriques et réducteurs, afin de prouver la fiabilité de l'appareil expérimental. Il ya une bonne concordance entre les données publiées et les résultats expérimentaux. / Des expériences dans lequelles l'air est enrichi avec de l'oxygène sont effectuées à des rapports d'équivalence de phi = 0.55 juste qu'à phi = 1.45; ces rapports d'équivalence ne sont normalement pas dans les limites d'inflammabilité des mélanges de méthane-air. Ici, les résultats montrent un désaccord marqué entre le modèle et les expériences pour les rapports d'équivalence très loin de phi = 1.0. Les données permettent le modèle cinétique chimique pour la combustion du méthane prémélangée d'être amélioré. En corrigeant les divergences entre le modèle et les resultats experimentales pour rapports d'équivalence très oxydants et très réducteurs, le modèle sera amélioré pour rapports d'équivalences généralement vus dans la combusiton de méthane dans l'air.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.87008 |
Date | January 2010 |
Creators | Salusbury, Sean |
Contributors | Jeffrey Bergthorson (Internal/Supervisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Engineering (Department of Mechanical Engineering) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | Electronically-submitted theses. |
Page generated in 0.0017 seconds