The ability to soft-launch projectiles to velocities exceeding 10 km/s is of interest for a number of scientific fields, including orbital debris impact testing. Current soft-launch technologies have reached a performance plateau below this operating range. In the implosion-driven launcher (IDL) concept, explosives are used to linearly implode a pressurized steel tube, thereby dynamically compressing a light driver gas to significantly higher pressures and temperatures than typical light-gas launchers. As a result, the IDL has the potential to significantly outperform current state of the art hypervelocity launchers. This work will focus on establishing an understanding of the critical design parameters of the IDL with the goal of improving the velocity potential of the launcher. For this purpose, a computational gasdynamics solver capable of simulating the internal ballistics of the IDL has been developed. The elevated pressure and temperature in the driver gas lead to a number of non-ideal effects during the launch cycle, including expansion of the launcher walls, convective heat transfer, and gas leakage, which have a significant effect on launcher performance. These effects have been simulated by coupling the gasdynamics solver to loss models. Specifically, a structural hydrocode has been developed to provide a realistic model of reservoir and launch tube expansion, which has been identified as the main source of performance loss in the launch cycle. The complete internal ballistics solver will be used in conjunction with classical internal ballistics theory and experimental results, in order to gain valuable understanding of the key design parameters of the launcher and improve the design of the McGill IDL. This analysis has led to the development of an IDL capable of launching a 0.1-g projectile to 9.1 km/s. / La capacité d'accéléré des projectiles à des vitesses au-delà de 10 km/s est d'intérêt pour de nombreuses applications, incluant la protection contre les débris spatiaux. La performance des lanceurs hyper-vitesse de pointe n'est pas capable de rejoindre ces vitesses. Le lanceur à implosion utilise des explosifs pour comprimer un gaz léger de façon dynamique, afin d'atteindre des pressions et des températures beaucoup plus élevés que des lanceurs hyper-vitesse typiques. Pour cette raison, le lanceur à implosion à le potentiel de surpasser la performance de tout autre lanceur. Ce travail mettra l'accent sur l'établissement d'une compréhension des paramètres de conception critiques du lanceur à implosion dans le but d'améliorer la performance du lanceur. A cet effet, un code capable de simuler la balistique interne du lanceur a été développé. La pression et la température élevées dans le gaz causent plusieurs pertes durant le cycle de lancement, y compris l'expansion des parois du lanceur, le transfert de chaleur par convection, et les fuites de gaz. Ces pertes ont un effet important sur la performance du lanceur. Les modèles utilisés pour simuler ces pertes sont aussi présentés. Le code complet sera utilisé en conjonction avec la théorie classique de la balistique interne ainsi que des résultats expérimentaux afin d'amélioré le lanceur. Cette analyse a conduit à l'élaboration d'un lanceur à implosion capable d'accéléré un projectile de 0,1 g à 9,1 km/s.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.117206 |
Date | January 2013 |
Creators | Huneault, Justin |
Contributors | Andrew J Higgins (Internal/Supervisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Engineering (Department of Mechanical Engineering) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | Electronically-submitted theses. |
Page generated in 0.0022 seconds