This project summarizes the findings of research organized in two parts. The first involved the characterization of changes in the variability of climate that lead to extreme events. The second focused on the predictability of extreme climate on time-scales ranging from short forecast lead-times to long-lead climate predictions exceeding a year.
Initial studies focused on three interrelated, yet regionally unique extreme climate phenomena. First, the relationship between increasing greenhouse gas (GHG) emissions and particulate matter (PM) concentration in basin terrain was investigated. Next, we evaluated changes in large-scale atmospheric circulation associated with two climate phenomena at either extreme side of the water cycle--droughts and floods. In the final analysis, an attempt was made to understand the mechanisms that link two North Pacific ENSO precursor patterns to the ENSO cycle.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8344 |
Date | 01 August 2018 |
Creators | Fosu, Boniface Opoku |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.0025 seconds