Return to search

Inductively Coupled Plasma Optical Emission Spectroscopy Analysis of Heavy Metal Concentrations in Gulf Menhaden (Brevoortia patronus) Populations in the Northern Gulf of Mexico from 2011 to 2012

In 2010, the Deepwater Horizon (DWH) oil spill, released 4.9 million barrels of oil into the Gulf of Mexico, creating the largest marine oil spill in the history of the U.S. petroleum industry. Trace metals, including those from crude oil, were dispersed in the water column and bound to suspended particulates. As obligate filter-feeding omnivores and a predominate fishery in the Gulf of Mexico, Gulf menhaden (Brevoortia patronus) are susceptible to trace metal accumulation. Samples of menhaden were collected at two locations in coastal Louisiana, Grand Isle (GI) and Vermillion Bay (VB), with VB serving as the non-impacted DWH oil spill site and GI as the impacted DWH oil spill site. The analysis of trace metals was performed using inductively coupled plasma-optic emission spectroscopy (ICP-OES) methods. Eleven metals (As, Ba, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn, V) were chosen and observed by four variables: place (VB or GI), size (small or large), month (July, August or September), and year (2011 or 2012) and the interactions between the variables. Metal concentrations in the current study followed the sequence: Fe > Zn > Ba > As > V > Cr > Cu > Ni > Pb > Co > Cd. Results showed that in 2011, VB had statistically higher concentrations than GI for 9 of the 11 metals. Elevated discharge rates during the Mississippi River Flood of 2011 produced a dilution effect, decreasing the concentration of trace metals in the water column at GI. Size was also significant, with small fish having statistically higher concentrations for 8 of the 11 metals. In fish, younger/smaller fish have higher metabolic activities than older/larger fish, which leads to a higher metal accumulation in smaller fish. Arsenic was the only metal that had higher concentrations in 2011 and in large fish. Differences in arsenic trends may be attributed to the DWH oil spill, which may have caused reduced adsorption of arsenic by the mineral goethite and increased concentrations of arsenic in the water. Iron and zinc in the current study exceeded the FAO/WHO maximum permissible limit.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-07012013-113825
Date03 July 2013
CreatorsRockett, Hannah Paula
ContributorsWilson, Vincent Lee, Gambrell, Robert P, Portier, Ralph Joseph
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-07012013-113825/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0015 seconds