One primary topic of sleep studies is the depth of sleep. According to definitions of R&K rules, human sleep can be roughly divided into three different stages: Awake, Non-rapid-eye-movement (NREM) Sleep, and Rapid-eye-movement (REM) Sleep. Moreover, sleep stages are scored mainly by EEG signals and complementally by EOG and EMG signals.
Many researchers have indicated that diseases or disorders occur during sleep will affect life quality of patients. For example, REM sleep-related dyssomnia is highly correlated with neurodegenerative or mental disorders such as major depression. Furthermore, sleep apnea is one of the most common sleep disorders at present. Untreated sleep apnea can increase the risk of mental and cardiovascular diseases.
This research proposes a detection method of REM sleep. Take into account the environment of homecare, we just extract and analyze EOG signals for the sake of convenience in comparison with EEG channels. By analyzing elementary waveforms of EOG signals based on VQ method, the proposed method performs a classification accuracy of 67.71% in a group application. The corresponding sensitivity and specificity are 73.38% and 68.95% respectively. In contrast, the average classification accuracy is 82.02% in personalized applications. And the corresponding average sensitivity and specificity are 83.05% and 81.62% respectively. Experimental results demonstrate the feasibility of detecting REM sleep via the proposed method, especially in personalized applications. This will be propitious to a long term tracing and research of personal sleep status.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0909107-084559 |
Date | 09 September 2007 |
Creators | Young, Chieh-neng |
Contributors | Chi-cheng Cheng, Pei-chung Chen, Wei-hwang Lin, Ming-huei Yu, Chen-wen Yen |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0909107-084559 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.002 seconds