Return to search

Distributed Electrical Power System in Cubesat Applications

The single bus voltage distributed architecture is the mainstay architecture for small satellite spacecraft. Even large satellites follow this architecture. While they may have more than one voltage that is distributed, such as a high voltage bus and a low voltage bus, within a subsystem, there is usually one bus voltage. Each subsystem component is responsible for further regulation or point-of-load regulation. The Nano-satellite class, and more particularly the cubesat, have broken away from this norm and overwhelmingly implement a centralized architecture. With the advances of small, highly efficient monolithic dc-dc converters, this thesis researches the possibilities of implementing the distributed architecture at the cubesat scale. The Goal is to create a very efficient electrical power system design that has a high degree of utility, allowing it to be used for multiple missions, without having to redesign the system every time.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2070
Date01 December 2011
CreatorsBurt, Robert
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0033 seconds