Since the rediscovery, LDPC codes attract a large amount of research efforts. In 1998, nonbinary LDPC codes were firstly investigated and the results shown that they are better than their binary counterparts in performance. Recently, there is always a requirement from the industry to design applied nonbinary LDPC codes. In this dissertation, we firstly propose a novel class of quasi-cyclic (QC) LDPC codes. This class of QC-LDPC codes embraces both linear encoding complexity and excellent compatibility in various degree distributions and nonbinary expansions. We show by simulation results that our proposed QC-LDPC codes perform as well as their comparable counterparts. However, this proposed code structure is more flexible in designing. This feature may show its power when we change the code length and rate adaptively. Further more, we present two algorithms to generate codes with short girth and better girth distribution. The two algorithms are designed based on progressive edge growth (PEG) algorithm and they are specifically designed for quasi-cyclic structure. The simulation results show the improvement they achieved. In this thesis, we also investigate the believe propagation based iterative algorithms for decoding of nonbinary LDPC codes. The algorithms include sum-product (SP) algorithm, SP algorithm using fast Fourier transform, min-sum (MS) algorithm and complexity reduced extended min-sum (EMS) algorithm. In particular, we present the proposed modified min-sum algorithm with threshold filtering which further reduces the computation complexity.
Identifer | oai:union.ndltd.org:ADTP/241721 |
Date | January 2009 |
Creators | Liu, Yue, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW |
Publisher | Publisher:University of New South Wales. Electrical Engineering & Telecommunications |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0017 seconds