The Schrodinger Hamiltonian for a single electron in a crystalline solid with independent, identically distributed (i.i.d.) single-site potentials has been well studied. It has the form of a diagonal potential energy operator, which contains the random variables, plus a kinetic energy operator, which is deterministic. In the less-understood cases of multiple interacting charge carriers, or of correlated random variables, the Hamiltonian can take the form of a random block-diagonal operator, plus the usual kinetic energy term. Thus, it is of interest to understand the eigenvalue statistics for such operators.
In this work, we establish a criterion under which certain random block operators will be guaranteed to satisfy Wegner, Minami, and higher-order estimates. This criterion is phrased in terms of properties of individual blocks of the Hamiltonian. We will then verify the input conditions of this criterion for a certain quasiparticle model with i.i.d. single-site potentials. Next, we will present a progress report on a project to verify the same input conditions for a class of one-dimensional, single-particle alloy-type models. These two results should be sufficient to demonstrate the utility of the criterion as a method of proving Wegner and Minami estimates for random block operators. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/51851 |
Date | 28 April 2015 |
Creators | Schmidt, Daniel F. |
Contributors | Mathematics, Elgart, Alexander, Hagedorn, George A., Klaus, Martin, Ball, Joseph A. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0023 seconds