El objetivo principal de la tesis gira en torno a la búsqueda de imágenes por similitud y, en concreto, a la evaluación y propuesta de técnicas para la recuperación y clasificación de imágenes de marcas similares. Hasta llegar al desarrollo del sistema presentado para evaluar la similitud de logos se ha realizado un estudio de las técnicas existentes para búsqueda de imágenes similares, implementando y comparando varias técnicas basadas en descriptores tradicionales y características neuronales que se describen en esta tesis. Para ello se ha usado MirBot, una app colaborativa de etiquetado de imágenes que ha permitido aplicar descriptores tradicionales y aproximaciones neuronales, sirviendo de ejemplo para ilustrar el recorrido realizado por las diferentes técnicas existentes y su evolución en el estado del arte. Adicionalmente se ha desarrollado un método de verificación geométrica sobre puntos de interés locales. Por último, se presenta un sistema de búsqueda de similitud de logos. Para ello se ha usado un conjunto de datos de la EUIPO (Oficina de Propiedad Intelectual de la Unión Europea) llamado EUTM (European Union Trademark), que, además de las imágenes, contiene metadatos con información sobre colores, formas, sectores y elementos figurativos. En base a este tipo de datos se propone un método de búsqueda por similitud multi-etiqueta de imagen de marca. Para ello se combinan técnicas de pre-procesamiento con redes neuronales convolucionales especializadas en la detección de características concretas de logotipos. Se han estudiado topologías aplicables a la imagen de marca y su relación con los metadatos de la base de datos utilizada. Para evaluar el sistema, y puesto que la semántica de marcas puede resultar muchas veces subjetiva, se han verificado los resultados mediante encuestas a estudiantes y profesionales del diseño, demostrando que el sistema propuesto mejora los resultados de los sistemas manuales incluso entre personas con conocimientos de diseño gráfico y composición de imágenes. Por tanto, el método propuesto también puede contribuir a mejorar el proceso de etiquetado de imagen, ya que ofrece una propuesta de clasificación con la probabilidad de pertenencia a cada una de las clases. El método propuesto permite obtener un ranking de los logos más similares permitiendo a los usuarios seleccionar las características a considerar en el proceso de búsqueda. Hasta donde sabemos no existen métodos en la literatura que aborden estos dos objetivos, por lo que consideramos que una propuesta de este tipo es de gran interés tanto metodológicamente como de forma práctica para ayudar en múltiples tareas, como pueden ser el etiquetado de logos, la detección de plagios o la búsqueda por similitud de imagen de marca.
Identifer | oai:union.ndltd.org:ua.es/oai:rua.ua.es:10045/127575 |
Date | 15 July 2022 |
Creators | Bernabeu, Marisa |
Contributors | Gallego, Antonio-Javier, Pertusa, Antonio, Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos |
Publisher | Universidad de Alicante |
Source Sets | Universidad de Alicante |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0, info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds