Return to search

Prediction of battery lifetime using early cycle data : A data driven approach

A form of laboratory tests are performed to determine battery degradation due to charging and discharging of batteries (cycling). This is done as part of quality assurance in battery production since a certain amount of degradation corresponds to the end of the battery lifetime. Currently, this requires a significant amount of cycling. Thus, if it’s possible to decrease the number of cycles required, the time and costs for battery degradation testing can be reduced. The aim of this thesis is therefore to create a model for prediction of battery lifetime while using early cycle data. Further, to assist planning regarding scale of cycle testing this study aims to examine the impact of implementing such a prediction model in production. To examine which data driven model that should be used to predict the battery lifetime at the company, extensive feature engineering is performed where measurements from specific cycles are used, inspired by the previous work of Severson et al. (2019) and Fei et al. (2021). Two models are then examined: Linear Regression with Elastic net and Support Vector Regression. To investigate the extent to which an implementation of such a model can affect battery testing capacity, two scenarios are compared. The first scenario is that of the current cycle testing at the company and the second scenario involves implementing a prediction model. The comparison then examines the time required for battery testing and the number of machines to cycle the batteries (cyclers). Based on the results obtained, the data driven model that should be implemented is a Support Vector Regression model with features relating to different battery cycling phases or measurements, such as charge process, temperature and capacity. It can also be shown that if a battery lifetime prediction model is implemented, it can reduce the time and number of cyclers required for testing with approximately 93 %, compared to traditional testing.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-197106
Date January 2022
CreatorsEnholm, Isabelle, Valfridsson, Olivia
PublisherUmeå universitet, Institutionen för matematik och matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf, application/pdf, application/pdf
Rightsinfo:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds