In this work, the various sources of errors in radar rain estimation are quantified and procedures are developed to reduce them. The few topics explored here are: the variability of drop size distributions (DSDs), radar calibration, and errors in polarimetric rain estimation. The findings resulting from this study include 1) a new filtering technique that reduces the spurious DSD sampling variability while maintaining the physical variability, 2) a generalization of previously suggested DSD models in terms of scaling concepts, 3) the experimental evidence of the physical interpretation of DSD evolution and of R-Z relationships, 4) the time scale dependence of the DSD variability and its implication for radar rain estimation, 5) the quantification of error sources in polarimetric rain estimation and its feasibility in operational environment, and 6) a complete set of stable radar calibration methods and their theoretical limits. All error statistics from this work will be used as a guideline in radar rain estimation.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.19509 |
Date | January 2003 |
Creators | Lee, Gyu Won |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Atmospheric and Oceanic Sciences) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 002021267, Theses scanned by McGill Library. |
Page generated in 0.0013 seconds