Earthworms are well known to increase decomposition of organic matter and release of plant available nutrients. They can also increase CO 2 and N2O fluxes from the soil by stimulating respiration, denitrification, and nitrification caused by soil microorganisms. The objective of this thesis was to examine the influence of different earthworm species and population numbers on CO2 and N2O fluxes from a corn agroecosystem. In the field study, earthworm treatments had a significant effect on CO2 fluxes, but there was no difference between CO 2 fluxes from the two species (Lumbricus terrestris L., Aporrectodea caliginosa Savigny) or from the two population levels (1x and 2x the naturally-occuring population). Also, the earthworm treatments had no significant effect on N2O fluxes. Since all treatments contained mixed species and similar population levels at the end of the study, it is likely that CO2 and N2O fluxes in the field were affected more by soil temperature and moisture fluctuations than by the earthworm treatments. The study was repeated in laboratory microcosms under environmental control. Again, earthworm treatments had a significant effect on CO2 fluxes, but not on N2O fluxes. Interestingly, the N 2O fluxes from microcosms containing L. terrestris came solely from denitrification, while the N2O fluxes from A. caliginosa microcosms were produced mostly by nitrification. It is not known why these species stimulate different groups of microorganisms that can produce N2O, and this remains to be investigated.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.101652 |
Date | January 2007 |
Creators | Speratti, Alicia B. |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Natural Resource Sciences.) |
Rights | © Alicia B. Speratti, 2007 |
Relation | alephsysno: 002592770, proquestno: AAIMR32789, Theses scanned by UMI/ProQuest. |
Page generated in 0.0023 seconds