Return to search

Simuleringar av elliptiska kurvor för elliptisk kryptografi / Simulations of elliptic curves for elliptic cryptography

This thesis describes the theory behind elliptic-curve Diffie-Hellman key exchanges. All the way from the definition of a group until how the operator over an elliptic curve forms an abelian group. This is illustrated with clear examples. After that a smaller study is made to determine if there is a connection betweenthe size of the underlying field, the amount of points on the curve and the order of the points to determine how hard it is to find out the secret key in elliptic-curve Diffie-Hellman key exchanges. No clear connection is found. Since elliptic curves over extension fields have more computational heavy operations, it is concluded that these curves serve no practical use in elliptic-curve Diffie-Hellman key exchange. / Denna rapport går igenom teorin bakom Diffie-Hellmans nyckelutbyte över elliptiska kurvor. Från definitionen av en grupp hela vägen till hur operatorn över en elliptisk kurva utgör en abelsk grupp gås igenom och görs tydligt med konstruktiva exempel. Sedan görs en mindre undersökning av sambandet mellan storleken av den underliggande kroppen, antal punkter på kurvan och ordning av punkterna på kurvan, det vill säga svårigheten att hitta den hemliga nyckeln framtagen med Diffie-Hellmans nyckelutbyte för elliptiska kurvor. Ingen tydlig koppling hittas. Då elliptiska kurvor över utvidgade kroppar har mer beräkningstunga operationer dras slutsatsen att dessa kurvor inte är praktiska inom Diffie-Hellman nyckelutbyte över elliptiska kurvor.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-158133
Date January 2019
CreatorsFelding, Eric
PublisherLinköpings universitet, Matematik och tillämpad matematik
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds