Return to search

Eco-design implementation for complex industrial system : From scenario-based LCA to the definition of an eco-innovative R&D projects portfolio

Face to the growing awareness of environmental concerns issued from human activities, eco-design aims at offering a satisfying answer in the products and services development field. However when the considered products become complex industrial systems, there is a lack of adapted methodologies and tools. These systems are among others characterised by a large number of components and subsystems, an extremely long and uncertain life cycle, or complex interactions with their geographical and industrial environment. This change of scale actually brings different constraints, as well in the evaluation of environmental impacts generated all along the system life cycle (data management and quality, detail level according to available resources...) as in the identification of adapted answers (management of multidisciplinary aspects and available resources, players training, inclusion in an upstream R&D context...). So this dissertation aims at developing a methodology to implement ecodesign of complex industrial systems. A general methodology is first proposed, based on a DMAIC process (Define, Measure, Analyse, Improve, Control). This methodology allows defining in a structured way the framework (objectives, resources, perimeter, phasing...) and rigorously supporting the ecodesign approach applied on the system. A first step of environmental evaluation based on Life-Cycle Assessment (LCA) is thus performed at a high systemic level. Given the complexity of the system life cycle as well as the exploitation variability that may exist from one site to another, a scenario-based approach is proposed to quickly consider the space of possible environmental impacts. Scenarios of exploitation are defined thanks to the SRI (Stanford Research Institute) matrix and they include numerous elements that are rarely considered in LCA, like preventive and corrective maintenance, subsystems upgrading or lifetime modulation according to the economic context. At the conclusion of this LCA the main impacting elements of the system life cycle are known and they permit to initiate the second step of the eco-design approach centred on environmental improvement. A multidisciplinary working group perform a creativity session centred on the eco-design strategy wheel (or Brezet wheel), a resource-efficient eco-innovation tool that requires only a basic environmental knowledge. Ideas generated during creativity are then analysed through three successive filters allowing: (1) to pre-select and to refine the best projects; (2) to build a R&D projects portfolio thanks to a multi-criteria approach assessing not only their environmental performance, but also their technical, economic and customers' value creation performance; (3) to control the portfolio balance according to the company strategy and the projects diversity (short/middle/long term aspect, systemic level...). All this work was applied and validated at Alstom Grid on electrical conversion substations used in the primary aluminium industry. The methodology deployment has allowed initiating a robust eco-design approach recognized by the company and finally generating a portfolio composed of 9 eco-innovative R&D projects that will be started in the coming months.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00760580
Date27 September 2012
CreatorsCluzel, François
PublisherEcole Centrale Paris
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0202 seconds