Cuando se ha de compartir un recurso entre demandas (de productos, clientes, tareas, etc.) competitivas que requieren una atención regular, es importante programar el derecho al acceso del recurso de alguna forma justa de manera que cada producto, cliente o tarea reciba un acceso al recurso proporcional a su demanda relativa al total de las demandas competitivas. Este tipo de problemas de secuenciación pueden ser generalizados bajo el siguiente esquema. Dados n símbolos, cada uno con demanda di (i = 1,...,n), se ha de generar una secuencia justa o regular donde cada símbolo aparezca di veces. No existe una definición universal de justicia, ya que puede haber varias métricas razonables para medirla según el problema específico considerado. En el Problema de Variabilidad en el Tiempo de Respuesta, o Response Time Variability Problem (RTVP) en inglés, la injusticia o irregularidad de una secuencia es medida como la suma, para todos los símbolos, de sus variabilidades en las distancias en que las copias de cada símbolo son secuenciados. Así, el objetivo del RTVP es encontrar la secuencia que minimice la variabilidad total. En otras palabras, el objetivo del RTVP es minimizar la variabilidad de los instantes en que los productos, clientes o trabajos reciben el recurso necesario. Este problema aparece en una amplia variedad de situaciones de la vida real; entre otras, secuenciación en líneas de modelo-mixto bajo just-in-time (JIT), en asignación de recursos en sistemas computacionales multi-hilo como sistemas operativos, servidores de red y aplicaciones mutimedia, en el mantenimiento periódico de maquinaria, en la recolección de basura, en la programación de comerciales en televisión y en el diseño de rutas para agentes comerciales con múltiples visitas a un mismo cliente. En algunos de estos problemas la regularidad no es una propiedad deseable por sí misma, si no que ayuda a minimizar costes. De hecho, cuando los costes son proporcionales al cuadrado de las distancias, el problema de minimizar costes y el RTVP son equivalentes. El RTVP es muy difícil de resolver (se ha demostrado que es NP-hard). El tamaño de las instancias del RTVP que pueden ser resueltas óptimamente con el mejor método exacto existente en la literatura tiene un límite práctico de 40 unidades. Por otro lado, los métodos no exactos propuestos en la literatura para resolver instancias mayores consisten en heurísticos simples que obtienen soluciones rápidamente, pero cuya calidad puede ser mejorada. Por tanto, los métodos de resolución existentes en la literatura son insuficientes. El principal objetivo de esta tesis es mejorar la resolución del RTVP. Este objetivo se divide en los dos siguientes subobjetivos : 1) aumentar el tamaño de las instancias del RTVP que puedan ser resueltas de forma óptima en un tiempo de computación práctico, y 2) obtener de forma eficiente soluciones lo más cercanas a las óptimas para instancias mayores. Además, la tesis tiene los dos siguientes objetivos secundarios: a) investigar el uso de metaheurísticos bajo el esquema de los hiper-heurísticos, y b) diseñar un procedimiento sistemático y automático para fijar los valores adecuados a los parámetros de los algoritmos. Se han desarrollado diversos métodos para alcanzar los objetivos anteriormente descritos. Para la resolución del RTVP se ha diseñado un método exacto basado en la técnica branch and bound y el tamaño de las instancias que pueden resolverse en un tiempo práctico se ha incrementado a 55 unidades. Para instancias mayores, se han diseñado métodos heurísticos, metaheurísticos e hiper-heurísticos, los cuales pueden obtener soluciones óptimas o casi óptimas rápidamente. Además, se ha propuesto un procedimiento sistemático y automático para tunear parámetros que aprovecha las ventajas de dos procedimientos existentes (el algoritmo Nelder & Mead y CALIBRA). / When a resource must be shared between competing demands (of products, clients, jobs, etc.) that require regular attention, it is important to schedule the access right to the resource in some fair manner so that each product, client or job receives a share of the resource that is proportional to its demand relative to the total of the competing demands. These types of sequencing problems can be generalized under the following scheme. Given n symbols, each one with demand di (i = 1,...,n), a fair or regular sequence must be built in which each symbol appears di times. There is not a universal definition of fairness, as several reasonable metrics to measure it can be defined according to the specific considered problem. In the Response Time Variability Problem (RTVP), the unfairness or the irregularity of a sequence is measured by the sum, for all symbols, of their variabilities in the positions at which the copies of each symbol are sequenced. Thus, the objective of the RTVP is to find the sequence that minimises the total variability. In other words, the RTVP objective is to minimise the variability in the instants at which products, clients or jobs receive the necessary resource. This problem appears in a broad range of real-world areas. Applications include sequencing of mixed-model assembly lines under just-in-time (JIT), resource allocation in computer multi-threaded systems such as operating systems, network servers and media-based applications, periodic machine maintenance, waste collection, scheduling commercial videotapes for television and designing of salespeople's routes with multiple visits, among others. In some of these problems the regularity is not a property desirable by itself, but it helps to minimise costs. In fact, when the costs are proportional to the square of the distances, the problem of minimising costs and the RTVP are equivalent. The RTVP is very hard to be solved (it has been demonstrated that it is NP-hard). The size of the RTVP instances that can be solved optimally with the best exact method existing in the literature has a practical limit of 40 units. On the other hand, the non-exact methods proposed in the literature to solve larger instances are simple heuristics that obtains solutions quickly, but the quality of the obtained solutions can be improved. Thus, the solution methods existing in the literature are not enough to solve the RTVP. The main objective of this thesis is to improve the resolution of the RTVP. This objective is split in the two following sub-objectives: 1) to increase the size of the RTVP instances that can be solved optimally in a practical computing time; and 2) to obtain efficiently near-optimal solutions for larger instances. Moreover, the thesis has the following two secondary objectives: a) to research the use of metaheuristics under the scheme of hyper-heuristics, and b) to design a systematic, hands-off procedure to set the suitable values of the algorithm parameters. To achieve the aforementioned objectives, several procedures have been developed. To solve the RTVP an exact procedure based on the branch and bound technique has been designed and the size of the instances that can be solved in a practical time has been increased to 55 units. For larger instances, heuristic, heuristic, metaheuristic and hyper-heuristic procedures have been designed, which can obtain optimal or near-optimal solutions quickly. Moreover, a systematic, hands-off fine-tuning method that takes advantage of the two existing ones (Nelder & Mead algorithm and CALIBRA) has been proposed.
Identifer | oai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/5961 |
Date | 05 July 2010 |
Creators | García Villoria, Alberto |
Contributors | Pastor, Rafael, Corominas Subias, Albert, Universitat Politècnica de Catalunya. Institut d'Organització i Control de Sistemes Industrials |
Publisher | Universitat Politècnica de Catalunya |
Source Sets | Universitat Politècnica de Catalunya |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs., info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds