Return to search

Functional Extinctions of Species in Ecological Networks

Current rates of extinctions are estimated to be around 1000 times higher than background rates that would occur without anthropogenic impacts. These extinction rates refer to the traditional view of extinctions, i.e. numerical extinctions. This thesis is about another type of extinctions: functional extinctions. Those occur when the abundance of a species is too small to uphold the species’ ecologically interactive role. I have taken a theoretical approach and used dynamical models to investigate functional extinctions and threshold values for species’ mortality rates in ecological networks. More specifically, I have derived threshold values for focal species mortality rates at which another species or the focal species itself goes numerically extinct (Paper I-II), or transgresses some predefined threshold abundance (Paper III). If an increased mortality rate of a focal species causes another species to go numerically extinct, the focal species can be regarded as functionally extinct, since its abundance is no longer large enough to uphold its ecologically interactive role. Such functional extinctions are investigated in the first papers (Paper I-II). In the following paper, limits for both increased and decreased mortality rates of species are explored (Paper III). Paper III also extends the basic theoretical idea developed in paper I-II into a more applied setting. In this paper I develop a time series approach aimed at estimating fishing mortalities associated with a low risk that any species in a community transgresses some predefined critical abundance threshold. In the last paper (Paper IV) the community wide effect of changes in the abundance of species is investigated. In the first paper (Paper I) I investigate threshold levels for the mortality rate of species in ecological networks. When an increased mortality rate of a focal species causes another species to go extinct, the focal species can be characterized as functional extinct, even though it still exists. Such functional extinctions have been observed in a few systems, but their frequency and general patterns have been unexplored. Using a new analytical method the patterns and frequency of functional extinctions in theoretical and empirical ecological networks are explored. It is found that the species most likely to be the first to go extinct is not the species whose mortality rate is increased, but instead another species in the network. The species which goes extinct is often not even directly linked to the species whose mortality rate is increased, but instead indirectly linked. Further, it is found that large-bodied species at the top of food chains can only be exposed to small increases in mortality rate and small decreases in abundance before going functionally extinct compared to small-bodied species lower in the food chains. These results illustrate the potential importance of functional extinctions in ecological networks and lend support to arguments advocating a more community-oriented approach in conservation biology, with target levels for populations based on ecological functionality rather than the mere persistence of species. In Paper II I use the approach developed in Paper I to explore the frequency and patterns of functional extinctions in ecological networks with varying proportions of mutualistic and antagonistic (predator-prey) interactions. The general results from Paper I are also found in Paper II; that is, an increased mortality rate of one focal species often first leads to an extinction of another species rather than to an extinction of the focal species itself. Further, the frequency of functional extinctions is higher in networks containing a mixture of interaction types than in networks with only antagonistic interactions. Overall, this study generalize the findings of paper I for networks containing a variety of interaction types. To make the theoretical approaches developed in paper I-II operational in a management setting I develop a time series approach aimed at estimating ecologically sustainable fishing mortalities in a multispecies fisheries context (Paper III). An ecologically sustainable fishing mortality is here defined as a long-term fishing mortality associated with a multispecies objective which infers a low risk that any species, either the focal species itself or another species, in a community transgresses a critical biomass limit, below which the risk of recruitment failure is high. The approach is exemplified using a statistical food web model of the dominating fish stocks in the Baltic Sea. For the most abundant fish stock a counterintuitive result is found; it is more likely that the multispecies objective is met if its mortality caused by fishing is increased compared to if it is decreased. Further, simultaneous changes of the fishing mortality of a number of interacting species in the food web model shows a much narrower region of possible sustainable fishing mortalities than a single species approach, something that is not captured by current stock assessment models. Altogether these results are governed by indirect effects propagating in the community and pinpoints the need to adopt community dynamical approaches in fisheries management. The population sizes of many species in the world are declining. Negative population trends are particular pronounced in large-bodied herbivores and carnivores, species known to play important regulatory roles in many ecosystems. Although this indicates that the ecological consequence of declining populations of species might be profound, its impact on ecosystem stability remains largely unexplored. In paper IV it is therefore explored how declining populations of rare and common species affects the resilience – recovery rate – of ecological networks. An analytical approximation shows that network resilience is a function of the harmonic mean of the species’ abundances. This means that network resilience is especially sensitive to declining abundances of rare species. Consistent with this analytically derived result, a clear and positive relationship between resilience and the abundance of the rarest species in a broad spectrum of dynamical models of ecological networks is found. Together these results illustrate the potentially negative consequences of declining populations of rare species for the stability of the ecological systems in which they are embedded, and provide ecological arguments for the protection and management of rare species.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-127148
Date January 2016
CreatorsSäterberg, Torbjörn
PublisherLinköpings universitet, Teoretisk Biologi, Linköpings universitet, Tekniska fakulteten, Linköping
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1757

Page generated in 0.0026 seconds