Return to search

Zkoumání konektivity mozkových sítí pomocí hemodynamického modelování / Exploring Brain Network Connectivity through Hemodynamic Modeling

Zobrazení funkční magnetickou rezonancí (fMRI) využívající "blood-oxygen-level-dependent" efekt jako indikátor lokální aktivity je velmi užitečnou technikou k identifikaci oblastí mozku, které jsou aktivní během percepce, kognice, akce, ale také během klidového stavu. V poslední době také roste zájem o studium konektivity mezi těmito oblastmi, zejména v klidovém stavu. Tato práce předkládá nový a originální přístup k problému nepřímého vztahu mezi měřenou hemodynamickou odezvou a její příčinou, tj. neuronálním signálem. Zmíněný nepřímý vztah komplikuje odhad efektivní konektivity (kauzálního ovlivnění) mezi různými oblastmi mozku z dat fMRI. Novost prezentovaného přístupu spočívá v použití (zobecněné nelineární) techniky slepé dekonvoluce, což dovoluje odhad endogenních neuronálních signálů (tj. vstupů systému) z naměřených hemodynamických odezev (tj. výstupů systému). To znamená, že metoda umožňuje "data-driven" hodnocení efektivní konektivity na neuronální úrovni i v případě, že jsou měřeny pouze zašumělé hemodynamické odezvy. Řešení tohoto obtížného dekonvolučního (inverzního) problému je dosaženo za použití techniky nelineárního rekurzivního Bayesovského odhadu, který poskytuje společný odhad neznámých stavů a parametrů modelu. Práce je rozdělena do tří hlavních částí. První část navrhuje metodu k řešení výše uvedeného problému. Metoda využívá odmocninové formy nelineárního kubaturního Kalmanova filtru a kubaturního Rauch-Tung-Striebelova vyhlazovače, ovšem rozšířených pro účely řešení tzv. problému společného odhadu, který je definován jako simultánní odhad stavů a parametrů sekvenčním přístupem. Metoda je navržena především pro spojitě-diskrétní systémy a dosahuje přesného a stabilního řešení diskretizace modelu kombinací nelineárního (kubaturního) filtru s metodou lokální linearizace. Tato inverzní metoda je navíc doplněna adaptivním odhadem statistiky šumu měření a šumů procesu (tj. šumů neznámých stavů a parametrů). První část práce je zaměřena na inverzi modelu pouze jednoho časového průběhu; tj. na odhad neuronální aktivity z fMRI signálu. Druhá část generalizuje navrhovaný přístup a aplikuje jej na více časových průběhů za účelem umožnění odhadu parametrů propojení neuronálního modelu interakce; tj. odhadu efektivní konektivity. Tato metoda představuje inovační stochastické pojetí dynamického kauzálního modelování, což ji činí odlišnou od dříve představených přístupů. Druhá část se rovněž zabývá metodami Bayesovského výběru modelu a navrhuje techniku pro detekci irelevantních parametrů propojení za účelem dosažení zlepšeného odhadu parametrů. Konečně třetí část se věnuje ověření navrhovaného přístupu s využitím jak simulovaných tak empirických fMRI dat, a je významných důkazem o velmi uspokojivých výsledcích navrhovaného přístupu.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:233576
Date January 2012
CreatorsHavlíček, Martin
ContributorsHluštík, Petr, Šmídl,, Václav, Jan, Jiří
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageUnknown
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0021 seconds