Cette thèse a pour objet de repousser les performances d'un interféromètre à atomes froids principalement sensible aux rotations selon un axe particulier. Des atomes de Cesium sont refroidis par laser, piégés, et lancés verticalement selon une configuration en fontaine. La sensibilité du gyromètre repose sur l'effet Sagnac et est proportionnelle à l'aire physique qu'entourent les deux bras de l'interféromètre. Nous utilisons des transitions Raman stimulées pour séparer les ondes atomiques et former une géométrie d'interféromètre de type Mach-Zehnder replié. Avec un temps d'interrogation de 800 ms, nous parvenons à une aire physique de 11 cm^2. Le manuscrit décrit les améliorations apportées au dispositif expérimental pour faire fonctionner le gyromètre avec une telle aire Sagnac. Une procédure d'alignement relatif des faisceaux Raman au niveau du microrad est présentée et est particulièrement importante pour permettre aux ondes de matière d'interférer. La caractérisation des bruits de vibration impactant la sensibilité du gyromètre, ainsi que sa réjection sont également décrites. Nous démontrons une sensibilité de 160 nrad/s à 1 s, et une stabilité long terme de 1.8 nrad/s après 10 000 s d'intégration. Ce niveau de stabilité représente une amélioration d'un facteur 5 par rapport à la précédente expérience de gyromètre du SYRTE de 2009, et d'un facteur 15 par rapport aux autres résultats publiés. Cette thèse présente également une nouvelle méthode d'interrogation des atomes pour opérer le gyromètre sans temps morts, un aspect important pour diverses applications des capteurs à atomes froids en navigation inertielle, en géophysique et en physique fondamentale. / This thesis aims at pushing the performances of a cold atom interferometer principally sensitive to rates of rotation in a particular axis. In our experiment, Cesium atoms are laser cooled, trapped and launched in a fountain configuration. According to the Sagnac effect, the sensitivity of the interferometer to rotation is proportional to the area enclosed by the interferometer arms. We use stimulated Raman transitions to split the atoms in two paths and to form a folded Mach-Zehnder-like interferometer architecture using four Raman pulses. With an interrogation time of the atoms of 800 ms, we achieve a Sagnac area as high as 11 cm^2. The thesis describes the improvements to the experimental setup to operate the gyroscope with such a high Sagnac area. A procedure for the relative alignment of the Raman beams at the microrad level is presented, which is critical to meet the interference condition of the cold atoms at the interferometer output. The characterization and mitigation of the vibration noise, affecting the gyroscope, is also demonstrated. We finally demonstrate a short term rotation stability of 160 nrad/s at 1 s and a long term stability of 1.8 nrad/s after 10 000 s of integration time. This stability level represents a factor 5 improvement compared to the previous SYRTE gyroscope experiment of 2009 and a factor 15 compared to other published results. The thesis work also presents a new method of interrogation to operate the gyroscope without dead times, which is important for various applications of cold atom sensors in inertial navigation, geophysics and in fundamental physics.
Identifer | oai:union.ndltd.org:theses.fr/2015PA066572 |
Date | 20 November 2015 |
Creators | Dutta, Indranil |
Contributors | Paris 6, Landragin, Arnaud |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds