Return to search

Refroidissement électronique à base de jonctions tunnel <br />supraconductrices

Au cours des dernières anneés, le refroidissement des électrons par effet tunnel dans des jonctions hybrides composés de métal Normal - Isolant - Supraconducteur (N-I-S) a suscité de plus en plus l'attention. Son principe repose sur un effet tunnel sélectif en énergie en raison de la présence d'une bande interdite Delta dans la densité d'états du supraconducteur. Avec une tension de polarisation inférieure à l'énergie du gap, seuls les électrons de plus haute énergie peuvent traverser l'interface du métal normal par effet tunnel, laissant derrière eux les électrons de moindre énergie. Nous avons mesuré la conductance différentielle de jonctions S-I-N-I-S avec une grande résolution. Son analyse nous renseigne sur la température électronique du métal normal en fonction de la tension. Un modèle quantitatif est proposé qui inclut le couplage électron-phonon et la résistance dite de Kapitza, à l'interface avec le substrat. Avec ce modèle, nous avons réalisé une description détailleé du courant électronique et du flux de chaleur. Nous avons également montré que la température des phonons dans le métal normal baisse sensiblement au-dessous de la température du substrat. A très basse température (T < 200 mK) et à faible tension de polarisation, le courant d'Andreev cohérent en phase domine le courant des quasi-particules. En analysant quantitativement l'équilibre thermique dans la jonction S-I-N-I-S, nous avons démontré que le courant d'Andreev transporte de la chaleur. Cette contribution thermique chauffe les électrons du métal normal. Le refroidissement électronique à la tension de polarisation optimum (V ~ 2Delta/e) dans la jonction S-I-N-I-S est un problème bien connu mais qui reste en suspens. L'effet de refroidissement dans la jonction S-I-N-I-S est accompagné par l'injection de quasi- particules dans les électrodes supraconductrices. Nous avons proposé un modèle simple pour la diffusion de l'excès des quasi-particules dans l'électrode supraconductrice possédant un piège métallique. Le modèle de diffusion a une solution analytique qui prédit la température minimum de refroidissement susceptible d'e^tre atteinte.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00371431
Date14 November 2008
CreatorsRajauria, Sukumar
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds