Efficiency-enhancing measures are evaluated for a serial hybrid fuel cell vehicle over a drive cycle. The regarded powertrain consists of fuel cell system, battery, DC-DC converter, inverter and electrical machine. Within the fuel cell system, the air supply is the largest parasitic load. For the lowest dissipation, different air compression architectures are optimized by a scaling algorithm and compared. Phase switching reduces DC-DC losses. Additionally, a variable DC-link voltage increases efficiency of electrical machine and inverter. Dynamic Programming (DP) is used to evaluate these measures. The DP was extended by start-up and shutdown energy of the fuel cell system to model realistic cycle consumptions. Finally, all these efficiency enhancing measures lead to a reduction of energy consumption by 6.4 % for the serial hybrid fuel cell vehicle over a drive cycle.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36258 |
Date | 25 November 2019 |
Creators | Uhrig, Florian, Säger, Peter, Kurzweil, Peter, von Unwerth, Thomas |
Contributors | Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:ch1-qucosa2-357204, qucosa:35720 |
Page generated in 0.0021 seconds