Return to search

Cooperative diversity and downlink power control using PARPS with application to LTE services (eMBMS and CoMP)

Mobile devices and their applications are continuing to develop and the more advanced they are, the more they require high data ranges and the more they demand of the available wireless communication networks. At present, LTE (Long Term Evolution) is a good solution as it provides the users of mobile devices with a good throughput and a low latency. In the future, the two most important aspects for end users will be system spectral efficiency and system power controlling. This thesis deals with LTE downlink spectral efficiency and power controlling. The thesis will show how, by using IP multicasting for the LTE downlink, the base station is able to provide the necessary data through a significantly smaller spectrum and, additionally, how cooperative diversity, i.e. the cooperation between several base stations, can improve or even maximise the total network channel capacity, regardless of bandwidth size. A Packet and Resource Plan Scheduling algorithm (PARPS) is used to schedule the transmissions, and the results are calculated in MATLAB. By this means it is possible to analyse the efficiency of the spectrum management, the coverage probability and the power controlling for the different transmitters used for the LTE downlink.The LTE downlink scheme is simulated in Matlab for different numbers of transmitters (2-3). IP multicasting over the LTE downlink manages to transmit the same amount of data using less transmission power (50- 66.6%) with a better system spectral efficiency.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-21604
Date January 2014
CreatorsAtif, Sohaib
PublisherMittuniversitetet, Avdelningen för informations- och kommunikationssystem, Mid sweden University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds