Return to search

Soil Temperature Influence on Water Use and Yield Under Variable Irrigation

The need for efficient use of water resources has increased the importance of optimum soil water usage in agricultural systems. Soil temperature has been shown to be important in influencing the early development of many plant species. Many agricultural regions have suboptimal soil temperature regimes for plant growth, and some cultural practices have been shown to reduce near-surface soil temperatures. The seasonal influence of soil temperature on soil water extraction and aboveground and belowground plant growth under variable irrigation was investigated at the USU Greenville Farm in Logan, UT. Soil surface mulches and buried heat cables were used to modify soil temperature. A line-source sprinkler system provided a gradient of water application.
During 1987 yields were mainly influenced by irrigation. During 1988 greater soil temperature differences resulted in significant plant growth and yield responses. Soil water depletion corresponded to soil temperature treatments during the early part of the growing seasons. Depth of maximum soil water depletion was about 20 cm deeper for warm treatments. Water uptake rates of earlier-maturing plants in warm treatments were reduced later in the season, so that cumulative seasonal soil water depletion was similar for all temperature treatments. Although depth of rooting was somewhat greater under high than low irrigation during 1988, low irrigation treatments depleted soil water to greater depth. There was no interactive response of plant growth and yield or of soil water depletion to soil temperature and irrigation treatments.
Modifications were made to a computer simulation model of the soil-plant-atmosphere system in order to more mechanistically simulate plant water uptake and to include influences of soil temperature on seasonal rooting growth and soil water extraction. The model adequately simulated both the pattern and magnitude of soil temperature influences on soil water depletion, and conclusions drawn from model simulations agreed with field observations during 1987 and 1988.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2999
Date01 May 1989
CreatorsWraith, Jon M.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0023 seconds