This thesis consists of four research papers. The main focus is on building the multivariate Conditional Correlation (CC-) GARCH models. In particular, emphasis lies on considering an extension of CC-GARCH models that allow for interactions or causality in conditional variances. In the first three chapters, misspecification testing and parameter restrictions in these models are discussed. In the final chapter, a computer package for building major variants of the CC-GARCH models is presented. The first chapter contains a brief introduction to the CC-GARCH models as well as a summary of each research paper. The second chapter proposes a misspecification test for modelling of the conditional variance part of the Extended Constant CC-GARCH model. The test is designed for testing the hypothesis of no interactions in the conditional variances. If the null hypothesis is true, then the conditional variances may be described by the standard CCC-GARCH model. The test is constructed on the Lagrange Multiplier (LM) principle that only requires the estimation of the null model. Although the test is derived under the assumption of the constant conditional correlation, the simulation experiments suggest that the test is also applicable to building CC-GARCH models with changing conditional correlations. There is no asymptotic theory available for these models, which is why simulation of the test statistic in this situation has been necessary. The third chapter provides yet another misspecification test for modelling of the conditional variance component of the CC-GARCH models, whose parameters are often estimated in two steps. The estimator obtained through these two steps is a two-stage quasi-maximum likelihood estimator (2SQMLE). Taking advantage of the asymptotic results for 2SQMLE, the test considered in this chapter is formulated using the LM principle, which requires only the estimation of univariate GARCH models. It is also shown that the test statistic may be computed by using an auxiliary regression. A robust version of the new test is available through another auxiliary regression. All of this amounts to a substantial simplification in computations compared with the test proposed in the second chapter. The simulation experiments show that, under both under both Gaussian and leptokurtic innovations, as well as under changing conditional correlations, the new test has reasonable size and power properties. When modelling the conditional variance, it is necessary to keep the sequence of conditional covariance matrices positive definite almost surely for any time horizon. In the fourth chapter it is demonstrated that under certain conditions some of the parameters of the model can take negative values while the conditional covariance matrix remains positive definite almost surely. It is also shown that even in the simplest first-order vector GARCH representation, the relevant parameter space can contain negative values for some parameters, which is not possible in the univariate model. This finding makes it possible to incorporate negative volatility spillovers into the CC-GARCH framework. Many new GARCH models and misspecification testing procedures have been recently proposed in the literature. When it comes to applying these models or tests, however, there do not seem to exist many options for the users to choose from other than creating their own computer programmes. This is especially the case when one wants to apply a multivariate GARCH model. The last chapter of the thesis offers a remedy to this situation by providing a workable environment for building CC-GARCH models. The package is open source, freely available on the Internet, and designed for use in the open source statistical environment R. With this package can estimate major variants of CC-GARCH models as well as simulate data from the CC-GARCH data generating processes with multivariate normal or Student's t innovations. In addition, the package is equipped with the necessary functions for conducting diagnostic tests such as those discussed in the third chapter of this thesis. / <p>Diss. Stockholm : Handelshögskolan, 2010. Sammanfattning jämte 4 uppsatser.</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hhs-952 |
Date | January 2010 |
Creators | Nakatani, Tomoaki |
Publisher | Handelshögskolan i Stockholm, Ekonomisk Statistik (ES), Stockholm : Ekonomiska forskningsinstitutet vid Handelshögskolan i Stockholm (EFI) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds