Return to search

The effects of neutrophil elastase on abnormal calcification in soft tissues

BACKGROUND: Calcification is a natural process of bone formation or osteogenesis. However, calcium is able to be deposited abnormally in soft tissues such as the aorta, adipose tissue and liver, causing these to harden. Abnormal calcification in arteries is a common factor contributing to high blood pressure and, further, many severe cardiovascular diseases such as atherosclerosis and coronary disease. In liver and adipose tissue, calcification always takes place accompanied by excess extracellular matrix (ECM) accumulation which is called fibrosis, contributing to cirrhosis and metabolic disorders including insulin resistance. In addition, it is documented that severe calcification in adipose tissues is able to cause damage to the micro-vascular system, and calcification in perivascular adipose tissue (PVAT) is a key effector of arterial stiffness. Dystrophic calcification, one of the most common types of abnormal calcification, usually occurs as a reaction to tissue damage such as obesity-induced inflammation. Increasing numbers of studies indicate that abnormal calcification is the result of re-differentiation towards osteogenesis which occurs in the nascent resident cells under the stimulation of multiple factors. The BMP/Smad signaling pathway is commonly known to participate in bone formation and is implicated in mineralization as well as local induction of inflammation. Importantly, BMP/Smad signaling as an inducer of the osteochondrogenic phenotype in vascular calcification is fully appreciated. However, the molecular events of dystrophic calcification triggered by obesity-induced chronic inflammation still remain unclear. Our previous studies have identified that imbalance with increased activity of neutrophil elastase (NE), a Ser protease mainly released by neutrophils during inflammation, and decreased serum levels of the NE inhibitor α1-antitrypsin A1AT, contributes to the development of obesity-related metabolic complications including insulin resistance, fatty liver and chronic inflammation. This study explored the effects of NE on abnormal calcification in soft tissues, which may be mediated by BMP/Smad signaling pathway, and, furthermore, the molecular mechanism by which NE activates the BMP/Smad signaling pathway.
METHODS: Wild-type mice were fed with either a high-fat high-fructose diet (HFHFD), a high-fat diet (HFD) alone or a normal chow diet (NCD), and NE-knockdown mice were fed with a HFHFD. Adipose tissue and liver were extracted from all mice. H&E staining and immunofluorescence staining (IF) detected the inflammation condition. Alizarin staining and von kossa staining were used to detect calcium deposits. 3,3′-Diaminobenzidine (DAB) staining was used to examine active phospho-Smad1/5 signaling. Regarding nascent resident cells which have potential ability of osteogenic re-differentiation, 3t3l1 fibroblast and human hepatic stellate cell (hHSC) were cultured in dishes and 6-well plates with coverslips. In our previous research, mouse aortic smooth muscle cells (mASMC) seeded in 6-well plates grew in an osteogenic medium (10mM β-glycerophosphate and 10mM Calcium chloride) in the presence or absence of NE (10nM). Calcium deposits were detected by Alizarin staining. 3t3l1 and hHSC was treated with NE (20nM, 30nM, 40nM), BMP2, TGFβ1 or NE combined with BMP2, TGFβ1 or NE inhibitor GW311616A (Axon). Further, we used specific chemical inhibitors, LDN-193189, BMP-ALK2/3 inhibitor, SB525334, TGFβ-ALK5 inhibitor, and I-191, PAR2 antagonist to investigate the molecular mechanism of NE’s effects on Smad signaling pathways. Cells in dishes were harvested, and the proteins were measured by western blot. Coverslips in 6-well plates were used for immunofluorescence.
RESULTS: The most severe calcification was found in the adipose tissue of HFHFD fed wild-type mice and moderate calcification took place in the HFD mouse group while NCD mice rarely had calcium deposits. NE-knockdown significantly prevented calcium deposits in adipose tissue compared with HFHFD wild-type mice. Consistently, we found increased phospho-Smad1/5 (p-Smad1/5) signaling in the adipose tissues of mice on the HFHFD and HFD mice while p-Smad1/5 was prevented in the NE-knockout group. Furthermore, NE enhanced calcium deposits in mASMC cultured in osteogenic medium. NE significantly activated p-Smad1/5 signaling in hHSC in the dose-effect relationship and contributes to an additive effect on p-Smad1/5 in the presence of BMP2 or TGFβ1. Although p-Smad1/5 was only slightly aroused by NE in 3t3l1 fibroblast, NE was able to promote p-Smad1/5 activation tremendously and specifically in the presence of BMP2 or TGFβ1 but not p-Smad2/3 which is the main downstream signaling of TGFβ1. Chemical inhibition of ALK2/3, not ALK5 or PAR2, was able to completely block NE’s effects in hSHC on p-Smad1/5 activation. In addition, the cleavage of osteoblast-cadherin or CDH11 (OB-cadherin) was observed in hHSC, which may indicate a lower beta-catenin abundance in the hHSC cells which were treated with NE.
CONCLUSION: NE has the potential to contribute to abnormal calcification in soft tissues including the liver, adipose tissue and aorta via activating canonical ALK2/3-BMP-Smad1/5 signaling pathway in the mesenchymal stem cell/MSC-lineage cells. In addition, NE is likely to break cell-cell adhesion which may contribute to cell proliferation and re-differentiation towards osteogenesis and fibrosis. / 2024-01-28T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/43737
Date29 January 2022
CreatorsWang, Dingxun
ContributorsJiang, Zhen, Zhou, Qiong
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0027 seconds