Return to search

Homogenization Relations for Elastic Properties Based on Two-Point Statistical Functions

In this research, the homogenization relations for elastic properties in isotropic and anisotropic materials are studied by applying two-point statistical functions to composite and polycrystalline materials. The validity of the results is investigated by direct comparison with experimental results.
In todays technology, where advanced processing methods can provide materials with a variety of morphologies and features in different scales, a methodology to link property to microstructure is necessary to develop a framework for material design. Statistical distribution functions are commonly used for the representation of microstructures and also for homogenization of materials properties. The use of two-point statistics allows the materials designer to consider morphology and distribution in addition to properties of individual phases and components in the design space.
This work is focused on studying the effect of anisotropy on the homogenization technique based on two-point statistics. The contribution of one-point and two-point statistics in the calculation of elastic properties of isotropic and anisotropic composites and textured polycrystalline materials will be investigated. For this purpose, an isotropic and anisotropic composite is simulated and an empirical form of the two-point probability functions are used which allows the construction of a composite Hull. The homogenization technique is also applied to two samples of Al-SiC composite that were fabricated through extrusion with two different particle size ratios (PSR). To validate the applied methodology, the elastic properties of the composites are measured by Ultrasonic methods. This methodology is then extended to completely random and textured polycrystalline materials with hexagonal crystal symmetry and the effect of cold rolling on the annealing texture of near- Titanium alloy are presented.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/14492
Date06 April 2006
CreatorsPeydaye Saheli, Ghazal
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0018 seconds