Each year million of babies are born pre-term, some of these pre-term births occur due to the motherhaving a too soft cervix which can not withstand the forces the baby exposes it to. The aim of thisstudy was to implement and evaluate a programmable shear wave elastography ultrasound system forcervical applications and investigate the optimal settings of shear wave elastography push voltage andshear wave elastography push focus depth. Shear wave elastography is an ultrasound based imagingmodality aiming to evaluate the tissue elasticity by using acoustic radiation forces to induce shear waves.The propagation of the shear waves through the tissue is then tracked in order to calculate the shearwave velocity which is related to the tissue elasticity. B-mode imaging, pushing sequence and planewave imaging have been implemented and measurements have been conducted on four cervical polyvinylalcohol phantoms. The acquired data has been post-processed using Loupas 2D-autocorrector to gainthe axial displacement and enabling tracking of the shear waves to allow evaluation and optimizationof the implemented method. The implemented shear wave technique showed to be able to distinguishcervical phantoms of dierent elasticity and a high pushing voltage and shallow focus push depth havebeen found to produce the most reliable results.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-183238 |
Date | January 2016 |
Creators | Larsson, Anna |
Publisher | KTH, Skolan för teknik och hälsa (STH) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-STH ; 2016:8 |
Page generated in 0.0128 seconds