Return to search

Investigation of System Requirements and Design of an Axial Flux Permanent Magnet Machine for an Electric Taxiing System for a Commercial Midsize Aircraft / Electric Taxiing

Driven by the gradually increasing electrification of the transportation industry, in particular the aviation sector, the future’s electrified aircraft requires not only an improvement of the flight operation, but also an enhancement of the movement on ground. One very promising concept to improve the taxiing operation is the integration of an electric propulsion system into the aircraft’s undercarriage, also called “Electric Taxiing”. This yields a decrease of the overall fuel consumption, reduction of emissions, and improvement of aircraft maneuverability to help reducing operating times on ground. In this thesis, the performance requirements for an electric taxiing system are investigated by using self-recorded real-life aircraft taxiing drive cycle data. Based upon the system requirements, the powertrain for the electric propulsion system is sized for a commercial midsize aircraft to achieve a similar driving performance to conventional taxiing maneuvers. The sized powertrain, including the determined electric motor characteristics, is evaluated using a developed simulation model which allows testing the proposed electric taxiing system given the attained drive cycles. For the electric machine which is implemented into the wheel of the aircraft’s main landing gear, an axial flux permanent magnet (AFPM) motor with segmented stator windings is selected due to its very compact structure while providing high torque capabilities. The AFPM motor is designed and evaluated by using analytical models and three-dimensional finite element analysis (3D FEA) to fulfill the specified motor characteristics required for the electric propulsion unit. Finally, suggestions for potential improvements and future work are discussed. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/18094
Date11 1900
CreatorsKelch, Fabian
ContributorsEmadi, Ali, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0029 seconds