Currently, the two most critical factors of microprocessor design are performance and power. The optimum balance of these two factors is reflected in the speed-power product(SPP). 32-bit CMOS adders are used as representative circuits to investigate a method of
reducing the SPP. The purpose of this thesis is to show that sizing gates according to fan-out and removing buffer drivers can reduce the SPP. This thesis presents a method for sizing gates in large fan-out parallel prefix circuits to reduce the SPP and compares it to
other methods. Three different parallel prefix adders are used to compare propagation delay and SPP. The first adder uses the depth-optimal prefix circuit. The second adder is based on Wei, Thompson, and Chen's time-optimal adder. The third adder uses a recursive doubling formation where all cells have minimum transistor width dimensions. The component cells in the adders are static CMOS as described by Brent and Kung. For all circuits, the smallest propagation delay occurs when the highest voltage supply is
applied. The smallest SPP occurs when the lowest voltage supply is applied, but with the lowest performance. The Recursive Doubling Adder always has the lowest propagation delay for a particular set of parameters. However, its SPP is nearly equal to the Brent-Kung Adders and lower than Wei's Adder. The power-frequency analysis reveals that a decrease in Vt causes higher power consumption due to leakage. / Graduation date: 1999
Identifer | oai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/33605 |
Date | 08 July 1998 |
Creators | Shah, Parag Shantu |
Contributors | Lu, Shih-Lien |
Source Sets | Oregon State University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0018 seconds