Orientador: Fábio Bertequini Leão / Resumo: Este trabalho propõe abordar o problema de alocação de dispositivos indicadores de faltas (IFs) em redes de distribuição de energia elétrica por meio da técnica do Algoritmo Genético Adaptativo (AGA). O algoritmo busca obter uma configuração eficiente de instalação de IFs no sistema e reduzir o custo anual da energia não suprida (CENS) e por outro lado, o custo anual de investimento dos sensores (CINV). Estes custos conflitantes devem ser minimizados como um problema combinatório utilizando o AGA que possui taxas de recombinação e mutação dinamicamente calibradas baseadas na diversidade de cada população no processo. Os resultados mostram que o AGA é um método efetivo para encontrar soluções para o problema de alocação de IFs. Quando comparado com o AG clássico em vários testes, é observado que o AGA tem uma convergência mais rápida mostrando ser mais eficiente. Além disso, o AGA é utilizado para obter uma variedade de soluções numa Fronteira de Pareto aproximada variando os pesos do CENS e o CINV na função objetivo. Portanto, esta metodologia permite obter um conjunto de soluções em lugar de uma única solução e a partir da Fronteira de Pareto é possível escolher a solução que melhor satisfaz os interesses técnicos e econômicos da concessionária de distribuição de energia elétrica. / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000878084 |
Date | January 2016 |
Creators | Cruz, Héctor Manuel Orellana |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira). |
Publisher | Ilha Solteira, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | f. |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0021 seconds