By means of molecular dynamics simulation the effect of external direct current electric field on the polyethylene-like (PE-like) polymer and methyl chloride solvent system is investigated. Three systems include normal solution, dilute solution, and lower-density solution are simulated. For each system, four conditions include non-charged polymers in nonpolar solvents, non-charged polymers in polar solvents, charged polymers in nonpolar solvents, and charged polymer in polar solvents are simulated.
The diffusion behavior of polymer in solvent is as functions of electric field, polarity of solvent molecules, and polarity of polymer. When an electric field is applied to the system include dielectric molecules, our calculation shows that the center of mass diffusion constant of polymer depends on the alignment of charged polymer or polar solvent molecules, the mobility of charged polymer or solvent molecules and the density of the system. The mobility of polar molecules results in the increase of the center of mass diffusion constant of polymer. The alignment of polar molecules results in the increase of fluid viscosity. This decreases the center of mass diffusion constant of polymer.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0710100-162205 |
Date | 10 July 2000 |
Creators | Wu, Chia-Rong |
Contributors | Jen-Wei Yu, Li-Hwa Lu, Cheng-Lung Chen |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0710100-162205 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0014 seconds