Return to search

Computer Simulation of a Polymer in Solvents under an External Electric Field

By means of molecular dynamics simulation the effect of external direct current electric field on the polyethylene-like (PE-like) polymer and methyl chloride solvent system is investigated. Three systems include normal solution, dilute solution, and lower-density solution are simulated. For each system, four conditions include non-charged polymers in nonpolar solvents, non-charged polymers in polar solvents, charged polymers in nonpolar solvents, and charged polymer in polar solvents are simulated.
The diffusion behavior of polymer in solvent is as functions of electric field, polarity of solvent molecules, and polarity of polymer. When an electric field is applied to the system include dielectric molecules, our calculation shows that the center of mass diffusion constant of polymer depends on the alignment of charged polymer or polar solvent molecules, the mobility of charged polymer or solvent molecules and the density of the system. The mobility of polar molecules results in the increase of the center of mass diffusion constant of polymer. The alignment of polar molecules results in the increase of fluid viscosity. This decreases the center of mass diffusion constant of polymer.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0710100-162205
Date10 July 2000
CreatorsWu, Chia-Rong
ContributorsJen-Wei Yu, Li-Hwa Lu, Cheng-Lung Chen
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0710100-162205
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0014 seconds