There is ongoing controversy about the possibility of adverse biological effects from environmental exposures to electric and magnetic fields. These fields are produced by all electrical equipment and appliances including electrical transmission lines. The objective of this environmental science study was to investigate the possible effects of a high voltage transmission line on domestic sheep (Ovis aries L,), a species that can often be found near such lines. The study was primarily designed to determine whether a specific effect of electric and magnetic fields found in laboratory animals also occurs in livestock under natural environmental conditions. The effect is the ability of fields, at levels found in the environment, to significantly depress the normally high nocturnal concentrations of the pineal hormone melatonin. Melatonin mediates the reproductive response to changes in photoperiod in seasonal breeders such as sheep. Factors which modify the production of nocturnal melatonin in sheep can have important effects on the timing of seasonal reproduction including the onset of puberty in this species. Ten female Suffolk lambs were penned for 10 months directly beneath a 500-kV transmission line near Estacada, Oregon. Ten other lambs of the same type were penned in a control area away from the transmission line where electric and magnetic fields were at ambient levels. Serum melatonin was analyzed by radioimmunoassay (RIA) from 6618 blood samples collected at 0.5 to 3-hour intervals over eight 48-hour periods. Serum progesterone was analyzed by RIA from blood samples collected twice weekly beginning when the lambs were 23 weeks old. This hormone was used to measure the onset of puberty. Serum cortisol was also assayed by RIA from the blood samples collected during the 48-hour samples. This was done to assess whether exposure to the transmission line produced stress in the growing lambs. Other supplemental biological data collected included body weight gain, wool growth, and behavior. An extensive study was conducted by engineers from the Bonneville Power Administration (BPA) to measure electric and magnetic fields and noise to which the lambs were exposed. This was accomplished by installing permanent monitors near both the control and line pens. Results showed that lambs in both the control and line groups had the typical pattern of melatonin secretion consisting of low daytime and high nighttime serum concentrations. There were no statistically significant differences between groups in melatonin levels, or in the phase or duration of the nighttime melatonin elevation. Age at puberty and number of reproductive cycles also did not differ between groups. Serum cortisol showed a circadian rhythm with highest concentrations during the day. Cortisol concentrations also seemed to reflect effects of known stressors on livestock, e.g., weaning, introduction to new housing, and vehicle transport. There were, however, no differences in cortisol concentrations between groups. Statistical analyses on other biological parameters revealed no differences between groups for body weight gain, wool growth, or behavior. The electrical monitoring program verified that the line group lambs were exposed to electric and magnetic fields at levels typical of those found beneath commercial 500-kV transmission lines. In summary, the large effect of electric and magnetic fields on melatonin concentrations reported in laboratory animals was not observed in this study of sheep.
Identifer | oai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-2316 |
Date | 01 January 1992 |
Creators | Lee, Jack Monroe, Jr. |
Publisher | PDXScholar |
Source Sets | Portland State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations and Theses |
Page generated in 0.0014 seconds