The objective of this dissertation is to analyse the performance of a linear induction motor suitable to drive a circular saw blade. A selection of analytical methods available from the field of electrical machine theory was used to investigate the particular type of motor. The theoretical analysis is supported by an extensive experimental investigation.
Although LIMs have been designed, analyzed and applied in other applications, significant differences exist between those LIMs and the one used for the new application. These include: the annular shaped motor, the smaller air gap, and the rotor which is thin and made of steel. Because of these differences, the methods used by previous investigators were not sufficient to design the LIM required.
The theoretical analysis used a selection of methods described in the literature to quantify the effect of the rotor material, the end effect and the edge effect. New methods are described to analyse the effect of the annular shape, the normal forces on the rotor and the coil connection. In addition, a new consideration in the optimisation of these type of motors is described. An extensive experimental program was undertaken. Six different linear motors were constructed with output powers ranging from one to fifty kWatts. In addition, inverters, dynamometers, flux measurement apparatus, speed measurement, thrust measurement and friction measurement apparatus were designed and constructed. The effects on performance of slot harmonics, winding connections, the end effect and the edge effect were measured.
Several contributions to the field of electrical machine theory are presented. The first is a new annular disc motor resistivity correction factor. Second, is the analysis of the effects of poles in parallel versus in series in linear induction motors. Third, is the experimental comparison between odd and even pole designs. The fourth is a second optimum goodness consideration for LIMs, which had not previously been considered. The fifth is the analysis of the rotor/stator attractive force for magnetic rotor double sided motors and a description of the flux (crenelated flux) which causes the force. Finally, a criterion for when the re-entry effect may occur is presented. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/29056 |
Date | January 1988 |
Creators | Peabody, Frank Gerald |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0017 seconds