Return to search

Game-theoretic equilibrium analysis applications to deregulated electricity markets

This dissertation examines game-theoretic equilibrium analysis applications to deregulated electricity markets. In particular, three specific applications are discussed: analyzing the competitive effects of ownership of financial transmission rights, developing a dynamic game model considering the ramp rate constraints of generators, and analyzing strategic behavior in electricity capacity markets. In the financial transmission right application, an investigation is made of how generators’ ownership of financial transmission rights may influence the effects of the transmission lines on competition. In the second application, the ramp rate constraints of generators are explicitly modeled using a dynamic game framework, and the equilibrium is characterized as the Markov perfect equilibrium. Finally, the strategic behavior of market participants in electricity capacity markets is analyzed and it is shown that the market participants may exaggerate their available capacity in a Nash equilibrium. It is also shown that the more conservative the independent system operator’s capacity procurement, the higher the risk of exaggerated capacity offers. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17875
Date11 September 2012
CreatorsJoung, Manho, 1972-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0019 seconds