Return to search

Data-Driven Fault Detection Using Trending Analysis

The objective of this research is to develop data-driven fault detection methods which do not rely on mathematical models yet are capable of detecting process malfunctions. Instead of using mathematical models for comparing performances, the methods developed rely on extensive collection of data to establish classification schemes that detect faults in new data. The research develops two different trending approaches. One uses the normal data to define a one-class classifier. The second approach uses a data mining technique, e.g. support vector machine (SVM) to define multi class classifiers. Each classifier is trained on a set of example objects.
The one-class classification assumes that only information of one of the classes, namely the normal class, is available. The boundary between the two classes, normal and faulty, is estimated from data of the normal class only. The research assumes that the convex hull of the normal data can be used to define a boundary separating normal and faulty data.
The multi class classifier is implemented through several binary classifiers. It is assumed that data from two classes are available and the decision boundary is supported from both sides by example objects. In order to detect significant trends in the data the research implements a non-uniform quantization technique, based on Lloyds algorithm and defines a special subsequence-based kernel. The effect of the subsequence length is examined through computer simulations and theoretical analysis.
The test bed used to collect data and implement the fault detection is a six degrees of freedom, rigid body model of a B747 100/200 and only faults in the actuators are considered. In order to thoroughly test the efficiency of the approach, the test use only sensor data that does not include manipulated variables. Even with this handicap the approach is effective with the average of 79.5% correct detection and 16.7% missed alarm and 3.9% false alarms for six different faults.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-10082006-190542
Date11 October 2006
CreatorsLuo, Min
ContributorsJorge Aravena, JianHua Chen, Kemin Zhou, Mort Naraghi-Pour, Bahadir Gunturk, Greg Stacy
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-10082006-190542/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.002 seconds