Return to search

A Radiation-Reliability Assurance Case using Goal Structuring Notation for a CubeSat Experiment

CubeSats have become an attractive platform for university-based spacecraft designs because they are cheaper and quicker to launch than full-scale satellites. One way of keeping costs for CubeSats low is using commercial off-the-shelf parts (COTS) instead of using space-qualified parts. Space-qualified parts are often costly, larger, and consume more power than their commercial counterparts prohibiting their use within a CubeSat. Given typical power budgets, monetary budgets, and timelines for CubeSat missions, conventional radiation hardness assurance, like the use of hardened parts and radiation testing campaigns of COTS parts, is not possible, requiring a system-level approach to radiation effects mitigation. In this thesis an assurance case for the radiation reliability of a CubeSat experiment is expressed using Goal Structuring Notation (GSN), a graphical argument standard. The case specifically looks at three main mitigation strategies for the radiation environment: total ionizing dose (TID) screening of parts, detection and recovery from single-event latch-ups (SEL) and single-event functional interrupts (SEFI). The graphical assurance case presented makes a qualitative argument for the radiation reliability of the CubeSat experiment using part and system-level mitigation strategies and is supported by functional and system models of the system.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-06302016-120807
Date06 July 2016
CreatorsAustin, Rebekah Ann
ContributorsDr. Arthur Witulski, Dr. Brian Sierawski
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-06302016-120807/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0021 seconds