Return to search

Enabling autonomous envionmental measurement systems with low-power wireless sensor networks

Wireless Sensor Networks appear as a technology, which provides the basisfor a broad field of applications, drawing interest in various areas. On theone hand, they appear to allow the next step in computer networks, buildinglarge collections of simple objects, exchanging information with respect totheir environment or their own state. On the other hand, their ability tosense and communicate without a fixed physical infrastructure makes theman attractive technology to be used for measurement systems.Although the interest inWireless Sensor Network research is increasing,and new concepts and applications are being demonstrated, several fundamentalissues remain unsolved. While many of these issues do not requireto be solved for proof-of-concept designs, they are important issues to beaddressed when referring to the long-term operation of these systems. Oneof these issues is the system’s lifetime, which relates to the lifetime of thenodes, upon which the system is composed.This thesis focuses on node lifetime extension based on energy management.While some constraints and results might hold true from a moregeneral perspective, the main application target involves environmental measurementsystems based onWireless Sensor Networks. Lifetime extensionpossibilities, which are the result of application characteristics, by (i) reducingenergy consumption and (ii) utilizing energy harvesting are to be presented.For energy consumption, we show howprecise task scheduling due to nodesynchronization, combined with methods such as duty cycling and powerdomains, can optimize the overall energy use. With reference to the energysupply, the focus lies on solar-based solutions with special attentionplaced on their feasibility at locations with limited solar radiation. Furtherdimensioning of these systems is addressed.It will be shown, that for the presented application scenarios, near-perpetualnode lifetime can be obtained. This is achieved by focusing on efficient resourceusage and by means of a carefully designed energy supply.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-12982
Date January 2011
CreatorsBader, Sebastian
PublisherMittuniversitetet, Institutionen för informationsteknologi och medier, Sundsvall : Mittuniversitetet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMid Sweden University licentiate thesis, 1652-8948 ; 54

Page generated in 0.001 seconds