Return to search

Design and implementation of miniaturised capsule for autofluorescence detection with possible application to the bowel disease

Early signs of intestinal cancer may be detected through variations in tissue autofluorescence (AF), however current endoscope-based AF systems are unable to inspect the small intestine. This thesis describes the design, fabrication, implantation, testing and packaging of a wireless pill capable of detecting the autofluorescence from cancerous cells, and able to reach parts of the gastrointestinal tract that are inaccessible to endoscopes. The pill exploits the fact that there is a significant difference in the intensity of autofluorescence emitted by normal and cancerous tissues when excited by a blue or ultra violet light source. The intensity differences are detected using very sensitive light detectors. The pill has been developed in two stages. The first stage starts with using an off-chip multi-pixel photon counter (MPPC) device as a light detector. In the second stage, the light detector is integrated into an application specific integrated circuit (ASIC). The pill comprises of an ASIC, optical filters, an information processing unit and a radio transmission unit, to transmit acquired data to an external base station. Two ASICs have been fabricated, the first stage of this work involved implementing an ASIC that contains two main blocks; the first block is capable of providing a variable DC voltage more than 72 V from a 3 V input to bias the MPPC device. The second main block is a front-end consisting of a high speed transimpedance amplifier (TIA) and voltage amplifiers to capture the very small current pulses produced by the MPPC. The second ASIC contains a high voltage charge pump up to (37.9 V) integrated with a single photon avalanche detector (SPAD). The charge pump is used to bias the SPAD above its breakdown voltage and therefore operate the device in Geiger mode. The SPAD was designed to operate in the visible region where its photon detection efficiency (PDE) peaks at 465 nm, which is near to human tissues autofluorescence peaking region (520±10 nm). The use of the ultra low light detector to detect the autofluorescence permits a lower excitation light intensity and therefore lower overall power consumption. The two ASICs were fabricated using a commercial triple-well high-voltage CMOS process. The complete device operates at 3V and draws an average of 7.1mA, enabling up to 23 hours of continuous operation from two 165mAh SR44 batteries.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:559968
Date January 2012
CreatorsAl-Rawhani, Mohammed Abdul Wahab
PublisherUniversity of Glasgow
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://theses.gla.ac.uk/3469/

Page generated in 0.0088 seconds