Return to search

Enhanced heavy oil recovery by hybrid thermal-chemical processes

Developing hybrid processes for heavy oil recovery is a major area of interest in recent years. The need for such processes originates from the challenges of heavy oil recovery relating to fluid injectivity, reservoir heating, and oil displacement and production. These challenges are particularly profound in shaley thin oil deposits where steam injection is not feasible and other recovery methods should be employed. In this work, we aim to develop and optimize a hybrid process that involves moderate reservoir heating and chemical enhanced oil recovery (EOR). This process, in its basic form, is a three-stage scheme. The first stage is a short electrical heating, in which the reservoir temperature is raised just enough to create fluid injectivity. After electrical heating has created sufficient fluid injectivity, high-rate high-pressure hot water injection accelerates the raise in temperature of the reservoir and assists oil production. At the end of hot waterflooding the oil viscosities are low enough for an Alkali-Co-solvent-Polymer (ACP) chemical flood to be performed where oil can efficiently be mobilized and displaced at low pressure gradients. A key aspect of ultra-low IFT chemical flood, such as ACP, is the rheology of the microemulsions that form in the reservoir. Undesirable rheology impedes the displacement of the chemical slug in the reservoir and results in poor process performance or even failure. The viscosity of microemulsions can be altered by the addition of co-solvents and branched or twin-tailed co-surfactants and by an increase in temperature. To reveal the underlying mechanisms, a consistent theoretical framework was developed. Employing the membrane theory and electrostatics, the significance of charge and/or composition heterogeneity in the interface membrane and the relevance of each to the above-mentioned alteration methods was demonstrated. It was observed that branched co-surfactants (in mixed surfactant formulations) and temperature only modify the saddle-splay modulus (k ̅) and bending modulus (k) respectively, whereas co-solvent changes both moduli. The observed rheological behavior agrees with our findings. To describe the behavior of microemulsions in flow simulations, a rheological model was developed. A key feature of this model is the treatment of the microemulsion as a bi-network. This provides accuracy and consistency in the calculation of the zero-shear viscosity of a microemulsion regardless of its type and microstructure. Once model parameters are set, the model can be used at any concentration and shear rate. A link between the microemulsion rheological behavior and its microstructure was demonstrated. The bending modulus determines the magnitude of the viscous dissipations and the steady-shear behavior. The new model, additionally, includes components describing the effects of rheology alteration methods. Experimental viscosity data were used to validate the new microemulsion viscosity model. Several ACP corefloods showing the large impact of microemulsion viscosity on process performance were matched using the UTCHEM simulator with the new microemulsion rheology model added to the code. Finally, numerical simulations based on Peace River field data were performed to investigate the performance of the proposed hybrid thermal-chemical process. Key design parameters were identified to be the method of heating, duration of the heating, ACP slug size and composition, polymer drive size, and polymer concentration in the polymer drive. An optimization study was done to demonstrate the economic feasibility of the process. The optimization revealed that short electrical heating and high-rate high-pressure waterflooding are necessary to minimize the energy use and operational expenses. The optimum slug and polymer drive sizes were found to be ~0.25 PV and ~1 PV, respectively. It was shown that the well costs dominate the expenditure and the overall cost of the optimized process is in the range of 20-30 $⁄bbl of incremental oil production. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/24796
Date24 June 2014
CreatorsTaghavifar, Moslem
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0019 seconds