The union of a set of materials by way of Resistance Spot Welding is designed so that once fused together, a substantial amount of intentional, external force must be applied to separate the contents. Therefore, Resistance Spot Welding is often the preferred fusion method in high-volume manufacturing processes. The result of Resistance Spot Welding however is the formation of a weld nugget which is not visible to the naked eye. Destructive and/or ultrasonic methods applied off-line must be used to determine the quality of each weld; both inefficient and expensive processes. The following research analyzes the data fed back during resistance spot weld sequences in-line and establishes a correlation between emitted characteristics and the final quality of a spot weld.
The two characteristics researched to segregate weld quality are: the electrical sin wave signature and the acoustic sin wave signature produced during the welding sequence. Both features were discovered to have a direct correlation to the final quality of a weld once cured. By measuring and comparing these characteristics at the source, an opportunity is presented to decrease time and potential defects by confirming the quality of each weld in-process and at the source.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ms_etds-1009 |
Date | 01 January 2019 |
Creators | Butler, Ivan Charles |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Manufacturing Systems Engineering |
Page generated in 0.0019 seconds