Return to search

Computing Moments of a Binary Horizontally/Vertically Convex Image Using Run-Time Reconfiguration

In this thesis, we present a design for computing moments of a binary horizontally/vertically convex image on an FPGA chip, using run-time reconfiguration. We compute the moments of up to third order for a total of 16 moments. We address how run-time reconfiguration speeds up moment computations without taking up huge hardware resources. Since we are considering a binary horizontally/vertically convex image, we look at an alternative method in moment computations that utilizes constant coefficient multipliers. We divide the image into segments and process one segment at a time. We reconfigure the constant coefficient multipliers before processing the next segment. This thesis also looks at the interactions between different logic units for moment computations. We provide an estimate of the total number of CLBs used to implement this design on an FPGA chip. Finally, we address variations of this particular type of image, such as non-binary and non-convex and determine whether this design is still applicable in those instances.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-0414102-135429
Date15 April 2002
CreatorsNeoh, Cheowway
ContributorsJerry Trahan, Ramachandran Vaidyanathan, Suresh Rai
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-0414102-135429/
Rightsunrestricted, I hereby grant to LSU or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Page generated in 0.0136 seconds