Return to search

Plane-Wave Scattering of a Periodic Corrugated Cylinder

<p> In this dissertation, a novel approach to modeling the scattered field of a periodic corrugated cylinder, from an oblique incident planewave, is presented. The approach utilizes radial waveguide approximations for fields within the corrugations, which are point matched to approximated scattered fields outside of the corrugation to solve for the expansion coefficients. The point matching is done with TMz and TEz modes simultaneously, allowing for hybrid modes to exist.</p><p> The derivation of the fields and boundary conditions used are discussed in detail. Axial and radial propagating modes for the scattered fields are derived and discussed. Close treatment is given to field equations summation truncation and conversion to matrix form, for numerical computing. A detailed account of the modeling approach using Mathematica&reg; and NCAlgebra for the noncommutative algebra, involved in solving for the expansion coefficients, are also given.</p><p> The modeling techniques offered provide a full description and prediction of the scattered field of a periodic corrugated cylinder. The model is configured to approximate a smooth cylinder, which is then compared against that of a textbook standard smooth cylinder. The methodology and analysis applied in this research provide a solution for computational electromagnetics, RF communications, Radar systems and the like, for the design, development, and analysis of such systems. Through the rapid modeling techniques developed in this research, early knowledge discovery can be made allowing for better more effective decision making to be made early in the design and investigation process of an RF project. </p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:10610475
Date07 June 2017
CreatorsGarcia, Samuel
PublisherFlorida Atlantic University
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0017 seconds