Return to search

Single-Event Upset Technology Scaling Trends of Unhardened and Hardened Flip-Flops in Bulk CMOS

Alpha, heavy-ion, neutron, and proton experimental results from 130-nm to 28-nm technology nodes are establish single-event upset cross section trends in soft and hardened flip-flop designs. Trends show that at any LET value soft flip-flops show a decreasing single-event upset cross section with decreasing feature size. Hardened redundant storage node flip-flops show similar cross sections across technologies if the redundant storage node transistor spacing is held constant. Technology computer aided design (TCAD) simulations are used to show there are many competing mechanisms that influence flip-flip single-event upset cross sections as technology feature sizes decrease.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03162017-144405
Date17 March 2017
CreatorsGaspard, Nelson Joseph
ContributorsShi-Jie Wen, Robert A. Reed, T. Daniel Loveless, Lloyd W. Massengill, Bharat L. Bhuva, W. Timothy Holman
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-03162017-144405/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0279 seconds