Return to search

A biomechanical model of femoral forces during functional electrical stimulation after spinal cord injury in supine and seated positions

Following a spinal cord injury (SCI), the paralyzed extremities undergo muscle atrophy and decrease in bone mineral density (BMD) due in part to the loss of physiological loading. It is crucial to prevent musculoskeletal deterioration so the population is less susceptible to fractures, and could take advantage of stem cell treatment if it becomes available. Functional electrical stimulation (FES) has been shown to advantageously train the paralyzed extremities. However, there is a risk of fracture during FES due to low BMD of individuals with SCI. Therefore, the forces generated during FES need to be modeled so researchers and clinicians safely administer this intervention.
The purpose of this project was to develop a biomechanical or mathematical model to estimate the internal compressive and shear forces at the distal femur, a common fracture site for individuals with SCI during FES. Therefore, a two-dimensional static model was created of the lower extremity in the supine and seated positions. The compressive and shear forces at the distal femur were estimated for both positions during FES. These internal compressive and shear forces estimated at the distal femur by the supine model were compared to those estimated by the standing model. Also, for the seated model, the compressive and shear forces at the distal femur estimated by a tetanic muscle contraction were compared to those estimated by a doublet muscle contraction. Finally, the supine model was validated using experimental testing.
The primary findings are 1) the standing model estimated more compressive force and less shear force at the distal femur compared to the supine model when position and quadriceps muscle force remain constant and 2) for the seated model, a tetanic quadriceps muscle contraction predicts greater compressive and shear at the distal femur compared to a doublet muscle contraction. Also the validation testing revealed a 3.4% error between the supine model and the experimental testing. These models provide valuable insights into the internal forces at the distal femur during FES for those with SCI.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-1895
Date01 July 2010
CreatorsMcHenry, Colleen Louise
ContributorsShields, Richard K., Grosland, Nicole M.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2010 Colleen Louise McHenry

Page generated in 0.0016 seconds