In this thesis, a physics-based single particle modeling is presented to analyze a proposed direct coupled hybrid energy storage modules using lithium-ion battery and ultracapacitor.
Firstly, a state of the art for the energy storage system in the electrified vehicles are summarized. Several energy storage elements including lead-acid battery, nickel-metal hydride battery, lithium-ion battery, ultracapacitor, and lithium-ion capacitor are reviewed. Requirements of the energy storage systems in electric, hybrid electric, and plug-in hybrid electric vehicles are generalized. Typical hybrid energy storage system topologies are also reviewed. Moreover, these energy storage elements and hybrid energy storage system topologies are compared to the requirements of the energy storage systems in terms of specific power and specific energy.
Secondly, the performance of different battery balancing topologies, including line shunting, ring shunting, synchronous flyback, multi-winding, and dissipative shunting are analyzed based on a linear programming methodology. As a traction battery in an electric or plug-in electric vehicle, high voltage lithium-ion packs are typically configured in a modular fashion, therefore, the analysis considers the balancing topologies at module level and cell level and focuses on minimum balancing time, minimum plug-in charge time, minimum energy loss, and component counts of every balancing topology for the entire battery pack.
Thirdly, different modeling techniques for the lithium-ion battery and ultracapacitor are presented. One of the main contributions of this thesis is the development of a physics-based single particle modeling embedded with a solid-electrolyte interface growth model for a lithium-ion battery in battery management system. This development considers the numerical solution of diffusion equation, cell level quantities, parametrization method, effects of number of shells in a spherical particle, SOC-SOH estimation algorithms, and aging effects. The accuracy of the modeling is validated by experimental results of a Panasonic NCR18650A lithium-ion battery cell.
Fourthly, the physics-based modeling is applied to analyze the performance of a proposed direct coupled hybrid energy storage module topology based on the Panasonic NCR18650A lithium-ion battery and Maxwell BCAP0350 ultracapacitor. There are many ways to directly connect battery cells and ultracapacitor cells in a module which would influence the performance of the module. The results show that a module has 9 cells in a battery string and 14 cells in an ultracapacitor string can obtain the highest power capability and utilize the most of the energy in an ultracapacitor. More ultracapacitor strings connected in parallel would increase the power density but reduce the energy density. Moreover, the simulation and experimental results indicate that the direct coupled hybrid modules can extend the operating range and slow the capacity fade of lithium-ion battery. An SOC-SOH estimation algorithm for the hybrid module is also developed based on the physics-based modeling.
Finally, a pack design methodology is proposed to meet U.S. Advanced Battery Consortium LLC PHEV-40, power-assist, and 48V HEV performance targets for the battery packs or the proposed direct coupled topologies. In order to explore replacement tradeoffs between the battery and ultracapacitor, a case study of the direct coupled topologies is presented. From the case study, ultracapacitors enhance the power capability for short term pulse power and marginally reduce the cost of an entire energy storage system. Moreover, the hybrid module topologies can keep a relatively long all-electric range when the batteries degrade. / Dissertation / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/20032 |
Date | January 2016 |
Creators | Gu, Ran |
Contributors | Emadi, Ali, Electrical and Computer Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0023 seconds