Return to search

APLICACIÓN DE REDES NEURONALES ARTIFICIALES EN EL PROCESADO VERSÁTIL DE SEÑALES ELECTROCARDIOGRÁFICAS

Es bien conocida la importancia de la señal electrocardiográfica para el diagnóstico de multitud de enfermedades cardiacas, tanto mediante inspección visual como mediante técnicas actuales de inspección automática. Como en cualquier otra señal, la cantidad de información extraída y la calidad de la misma dependerán de propiedades tales como relación señal-ruido, resolución del conversor analógico-digital, frecuencia de muestreo, etc. Por esta razón, es de gran importancia que la señal ofrezca una `calidad' adecuada, máxime cuando el diagnóstico de ciertas enfermedades cardiovasculares graves depende de ello. La reducción del ruido en el electrocardiograma (ECG) ha sido uno de los temas más abordados en la bibliografía sobre procesado de señal de ECG. Han sido y son muy diversas las maneras de afrontar el problema y no existe un único método de aplicación universal a todas las fuentes de ruido y todos los casos. En esta tesis doctoral se han estudiado las principales fuentes de ruido que aparecen en el registro del ECG. Algunas de éstas pueden minimizarse en la fase de adquisición de la señal prestando un especial cuidado a ciertas normas o reglas. Sin embargo, otras, como el ruido muscular, o la deriva de la línea base y artefactos, no pueden eliminarse o reducirse al máximo en la fase de adquisición y se hacen necesarias técnicas de procesado de señal a posteriori para su reducción a un nivel aceptable. Una de las primeras opciones es el filtrado de la señal, mediante filtros lineales o no lineales que maximicen la relación señal a ruido como, por ejemplo, el filtro de Wiener. Cuando el espectro de la señal de interés y el ruido se solapan, las técnicas de filtrado dejan de ser eficaces. En ese caso, otra de las técnicas comunes que se aplican es el promediado de señal. Su utilización resulta eficaz siempre y cuando la señal y el ruido a reducir cumplan ciertas condiciones. El filtrado adaptativo ha sido otra de las técnicas que han obtenido resultados aceptables e / Mateo Sotos, J. (2012). APLICACIÓN DE REDES NEURONALES ARTIFICIALES EN EL PROCESADO VERSÁTIL DE SEÑALES ELECTROCARDIOGRÁFICAS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17530

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/17530
Date23 October 2012
CreatorsMateo Sotos, Jorge
ContributorsRieta Ibañez, José Joaquín, Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
SourceRiunet
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds