A novel electrode was constructed and tested in a bio-battery. This configuration consisted of a composite electrode with immobilized bacteria (Escherichia coli K-12) in the anode and a composite electrode with immobilized Carbon Nanoparticles (CNP) and algae (Chlorella vulgaris/Scenedesmus sp.) suspended in the cathode. The composite electrode consisted of three parts: a 304L stainless steel mesh base, an electro-polymerized layer of pyrrole, and an electro-polymerized layer of methylene blue. The bacteria were immobilized on the anode electrode using a technique incorporating CNP and a Teflontm emulsion. The anode and cathode electrodes were tested separately in conjunction with chemical cathodes and anodes respectively.
The composite electrode with immobilized bacteria was tested in a bioanode setup. The cathode chamber of the cell contained a potassium ferricyanide and buffer solution with a graphite electrode. Factors affecting electrode performance, such as Teflontm and carbon nanoparticle concentration, were investigated to find optimum values. The maximum power density generated by the composite electrode with immobilized bacteria and a chemical cathode was 378 mW/m2. This electrode configuration produced approximately 69% more power density and 53% more current density than composite electrodes with bacteria suspended in solution. Electrochemical Impedance Spectroscopy analysis determined that a significant portion of the bio-battery’s resistance to charge transfer occurred at the surface of the anode and this resistance was significantly lowered when using immobilized bacteria (51% lower than bio-batteries with suspended bacteria).
Similarly, biocathodes containing composite electrodes coated with CNP were tested using two algae species, Chlorella vulgaris and Scenedesmus sp., suspended in solution. This electrode configuration was compared with composite electrode without CNP coating. The anode chamber contained potassium ferrocyanide solution with a graphite counter electrode. The composite electrode with CNP produced approximately 23% more current density than composite electrode without CNP.
A complete bio-battery was designed using a composite electrode with immobilized bacteria anode and a CNP coated composite electrode with algae suspended in the cathode. EIS analysis showed that the resistance was higher in the biocathode than in the bioanode and a significant portion of the ohmic resistance was contributed by the membrane.
Identifer | oai:union.ndltd.org:USASK/oai:ecommons.usask.ca:10388/ETD-2014-01-1402 |
Date | 2014 January 1900 |
Contributors | Evitts, Richard |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text, thesis |
Page generated in 0.0019 seconds