Return to search

The Study of Conducting Polymer Polyaniline in Organic Solar Cells

This thesis studied on the research of how conducting polymer polyaniline can be used in the buffer layer of organic solar cell. There are two methods used.¡]1¡^Using spin-coating to make film of polyaniline solution.¡]2¡^Polymerizing aniline on the substrate directly by electrochemical polymerization. The electrochemical method is separated into cyclic voltammetry and potentiostatic method respectively. The latter method which improved the disadvantage of infractable thick film and low electric conductivity of polyaniline for spin-coating is chosen as the preparation method for polyaniline films. We discuss of the photoelectric characteristics and surface morphologies of polyaniline film and to make a solar cell base on Poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester measured with AM 1.5G 100 mW/cm2 solar light simulation.
This research combine above-mentioned results to use potentiostatic method to polymerize polyaniline on the PEDOT¡GPSS into a compound electrode and to replace currently popular ITO positive pole in a organic solar component. The structure is PEDOT¡GPSS/PANI/P3HT¡GPCBM/Al. By electroplating polyaniline, it can enhance the electric conductivity of the film of PEDOT¡GPSS from 1 S/cm to 154 S/cm, furthermore, to reach 1.06% of photoelectric conversion efficiency and creates a new possibility of preparing a flexible organic solar cell.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0831112-135004
Date31 August 2012
CreatorsChen, Yi-Fan
ContributorsShun-Wei Liu, Chih-Chien Lee, Ray-Chung Chang, Yu-Kai Han, Ko-Shan Ho, Wen-Yao Huang, Mei-Ying Chang, Ping-Tsung Huang, Ann-Kuo Chu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0831112-135004
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0021 seconds