Return to search

Peptide monolayers : an electrochemical study

Understanding electron-transfer (ET) processes in proteins is of fundamental importance. In a series of photophysical studies of well-behaved peptide model systems, it has become evident that the ET through peptide spacers is greatly influenced by the separation between the acceptor (A) and the donor (D), the nature of the peptide backbone, the amino acid sequence, and the resulting flexibility of the peptide conjugates. In particular, it was suggested in the literature that the presence of H-bonding will increase the rate of ET, and there is experimental evidence, mostly in proteins, to suggest that H-bonding indeed increases the rate of ET.<p>My aim was to develop a potential-assisted deposition method for ferrocene peptide disulfides onto gold surfaces and investigate the electrochemical properties of these films. We made use of two classes of Fc-peptides: acylic ferrocenoyl (Fc)-peptide disulfides and cyclo-1,1-Fc-peptide disulfides, allowing the preparation of tightly packed films of cyclic and acylic Fc-peptides on gold surfaces within 30 minutes. This is a significant benefit compared to the conventional soaking method of self-assembly requiring several days for the assembly of well-packed films. Such films exhibited considerably improved stability. This electrodeposition method should find wide-spread applications for the formation of tightly-packed films from disulfides. Our studies allowed a direct comparison of the electron transfer kinetics of cyclic and acyclic Fc-peptide disulfide systems. Our results showed faster ET kinetics for films prepared from cyclic Fc-peptide conjugates compared to the acyclic systems, presumably as a result of the enhanced rigidity of the Fc-peptide conjugates on the surface and/or an increase of the number of conductive peptide wires to the surface. Following the idea of peptide dynamics as a major contributor to the observed electron transfer rate in peptides and peptide conjugates, variable temperature electrochemical studies of Fc-peptide films were performed. An estimation of the reorganization energy associated with ferrocene/ferrocenium (Fc/Fc+) redox process allowed us to probe the role of peptide dynamics. Three counter-ions were tested, exhibiting different strengths of association with the Fc+ group (BF4- < ClO4- < PF6-) and the reorganization energies were evaluated in each case. The highest reorganization energy was obtained for the weakly interacting anion BF4-. Weakly interacting anions also showed significant broadness in the redox peaks and emergence of the second oxidation peak which is attributed to phase separation of the ferrocene group. Ferrocene agglomeration was not observed for any of the cyclic Fc-peptide conjugates but occurred for some of the acyclic systems. In particular, for acyclic Val and Leu containing Fc-peptide conjugates agglomeration were observed and was presumably caused by lateral interactions between the hydrophobic side-groups of the peptides. Further experiments involving the interaction of Fc-peptide films with alkali metal ions gave additional evidence that electron transfer is influenced significantly by peptide dynamics.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-09032007-122451
Date05 September 2007
CreatorsOrlowski, Grzegorz Artur
ContributorsMoewes, Alexander, Kraatz, Heinz-Bernhard, Baranski, Andrzej S., Sanders, David A. R.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-09032007-122451/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds