The aim of this thesis is to develop a better understanding about the degradation mechanisms occurring within lithium-ion cells which eventually lead to their failure. An introduction to the components and operation of Li-ion cells is followed by proposed degradation mechanisms which limit the lifetime of cells. These mechanisms and how they can be identified from electrochemical testing are discussed.
Electrolyte additives can be used to improve the safety of Li-ion cells or decrease the rate of cell degradation. Different types of additives and testing methods are discussed followed by an introduction to high precision coulometry which can be used to detect the impact of additives on cycling performance. The High Precision Charger that was constructed for this project is described and shown to meet the desired precision.
The use of additives and different materials to extend lifetime of cells is shown to be detectable through the use of high precision coulometry. High precision coulometry proves to be a more efficient way of estimating the lifetime of cells under realistic conditions in a reasonably short amount of time. / MSc. Thesis
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/14115 |
Date | 12 August 2011 |
Creators | Burns, John Christopher |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Page generated in 0.0021 seconds