This thesis is part of a major research project to analyse vibro-acoustic characteristics from variable speed inverter driven induction motors (VSIDIM). The overall projects??? aimed at providing a better understanding of the mechanisms of sound generation from electromagnetic origins and developing a numerical model to predict the sound power emitted from a VSIDIM. The scope of this thesis is to assess experimentally the effect of various controller strategies on the radiated sound power and to develop a finite element method for calculating the electromagnetic force distribution over the stator. Various sources of noise in induction motors and their behaviour with speed and load have been reviewed. Models of the electromagnetic field and vibro-acoustic character have been discussed. An outline of various techniques of reducing noise in induction motors through design of inverters and modifications to the motor structure has been given. Experiments were conducted to assess the effect of controller strategies on the radiated sound power. Three different supplies were tested: a dynamotor which produces an almost sinusoidal supply with very low harmonic content, an inverter with a low switching frequency (less than 1kHz) and an inverter with a high switching frequency (8kHz) and various levels of random modulation. Results indicate that the sound power level of the MSC drive is a lot higher than that of the VSC 2000 drive and the dynamotor drive. The sound power level of the VSC 2000 drive and the dynamotor drive increases almost linearly with motor speed, that for the MSC drive is almost independent of speed. The sound power level of the MSC drive is almost 28dB higher than that of the dynamotor drive at 450rpm and the difference is reduced to 14dB at 1500rpm where the aerodynamic noise becomes more dominant. It has been found that at the rated speed (1500rpm), the sound power level varies by less than 3dB from no load to full load for all three sources. Although increasing the switching frequency increases the cost of the inverters and switching losses, results from the MSC and VSC 2000 drives clearly show that it reduces the radiated sound power by shifting the harmonics into higher and inaudible frequency range. The tonal nature around the switching frequency has been reduced by increasing the levels of random modulation to spread the energy over a wider range of frequencies, although the sound power level has not varied by more than 0.2dB. A finite element model has been developed to calculate the electromagnetic force distribution. The quasi-static solution method has been implemented by stepping the rotor through the time domain using a fine regular mesh in the air gap. The stator currents were experimentally obtained while the rotor currents were obtained using a 4 parameter state space model of the motor. Results of the simulation indicate the influence of stator and rotor slots, saturation and time harmonics in the current. The calculated electromagnetic force distribution has been used in a FEM/BEM acoustic model and SEA acoustic model to predict the radiated sound power which agrees reasonably well with the measured sound, thus validating indirectly the electromagnetic force simulations.
Identifer | oai:union.ndltd.org:ADTP/257872 |
Date | January 2002 |
Creators | Astfalck, Allen, Electrical Engineering, Australian Defence Force Academy, UNSW |
Publisher | Awarded by:University of New South Wales - Australian Defence Force Academy. School of Electrical Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Allen Astfalck, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.002 seconds